4.1 Fire regimes

You understand:

- ✓ Fire fundamentals
- ✓ Fire behavior
- ✓ Fire ecology
- Fire regimes
- Fire management
- Fire in a changing world

What is a "fire regime"?

- Concept built from properties of many individual fires
- <u>Aggregate properties of multiple fires in space</u> and time
- Not just mean conditions, also interested in variation in space and time
- Includes linkages to regulating factors of fire behavior and ecology

Properties of <u>individual</u> fires (you know this stuff now!)

Property	Typical units or metrics		
<i>Type</i> Ignition	Classified as ground, surface, active or passive crown fires Lightning, human (intentional, inadvertent)		
<i>Behavior</i> Rate of spread Crowning index	m min ⁻¹ km hr ⁻¹		
<i>Biophysical</i> Fireline intensity Energy output per unit time Flame length Peak temperature	$kW m^{-1}$ BTU m ⁻² hr ⁻¹ or kJ m ⁻² hr ⁻¹ m °C		
<i>Spatial</i> Extent Spatial heterogeneity	Total area covered by event, typically outer fire perimeter (ha or km ²). Proportion of burn area by intensity or severity class (%); patch size distribution.		
<i>Temporal</i> Duration Seasonality	Elapsed time (hr, day), residence time at a point (min). Time of year; relationship to plant phenology or annual animal life cycles		
<i>Severity</i> Fuel consumption Plant mortality Soil effects	Effects on biotic and abiotic ecosystem elements. % consumed or kg m ⁻² by fuel size class % by size class and species Duff and organic layer consumption (cm, %); hydrophobic conditions (%)		

So a "fire regime" is:

"...the combined properties of multiple fires in space and time."

Then how do we characterize fire *regimes*?

Dimension	Typical metrics and units			
Temporal distribution				
Frequency (<i>f</i>)	Number of events (events t^{-1} area- $y = 1/I$).			
Return interval (i)	Time between events (<i>t</i> event -1 area- $y = 1/f$).			
Fire rotation or fire cycle	Time to burn defined area (time total area $^{-1}$); modelled mean fire interval (fire cycle).			
Frequency or interval variability (temporal heterogeneity)	Statistical measures of central tendency (mean, median, mode) and dispersion (variance, skewness, kurtosis). Also reflected in parameter values in mathematical models.			
Duration	Residence time (<i>t</i>) for a defined area.			
Seasonality	Intra-annual occurrence.			
Spatial distribution				
Fuel types	Ground, surface canopy fuels; fuel size distribution.			
Extent	Total area covered (km ²).			
Spatial heterogeneity	Proportion of total area affected (%); patch size (ha), aggregation and contagion indices.			
Intensity	Physical properties, <i>e.g.</i> : flame length (m), flame temperature (°C.), fireline intensity (kW m^{-1}), rate of spread (m hr^{-1}), energy output (BTU $hr^{-1} m^{-2}$ or kJ m^{2}).			
Severity	Effects on biotic and abiotic elements of the community, <i>e.g.</i> : mortality by species (%), litter and duff consumption (%), canopy scorch height (m), crown consumption (%), soil loss.			

Temporal variability in fire regimes

10-year moving fire frequency at Monument Canyon RNA

Of these, the most important fire regime properties (the ones we'll talk most about) are:

- 1. Characteristic fuel stratum burned
- 2. Fire frequency
- 3. Fire interval (mean and distribution)
- 4. Fire size (area burned)
- 5. Seasonality
- 6. Burn severity, patch sizes
- 7. Percent mortality (usually of overstory)
- 8. Soil and hydrological effects
- 9. Relationship to climate

Understanding fire regimes is how we can determine whether some areas are becoming converted to historically unprecedented regimes

Major types of fires

- Ground fire
- Surface fire
- Crown fire
- These all depend on the <u>location</u> (stratum) and <u>type of fuel</u> that is burning
- Big differences in behavior, intensity, and severity

Ground Fuels

All combustible materials lying beneath the surface:

- Deep duff
- Tree roots
- Rotten buried logs
- Other organic material

Ground fuels are important for:

- Fire spread (smoldering, creeping)
- Fire effects (belowground, e.g. effects on roots and soil)
- Fire breaks used in suppression

Surface Fuels

Combustible materials <u>on or</u> <u>above</u> the soil surface, usually within ~1-3 m

- Fine fuels (grasses, forbs, litter)
- Woody fuels (1-1000 hr)
- Small shrubs

Canopy Fuels

Combustible materials in the crowns of large shrubs and trees

- Foliage (live and dead)
- Branches
- Epiphtyes

Canopy fire in sagebrush ecosystem. Photo: Cal Farris, NPS

Torching:

- When crown fire occurs in a single tree
- "Torching index": the windspeed needed to carry fire from the surface to canopy
- <u>Low</u> TI means that fire goes up into canopy easily

Rodeo-Chediski Fire; ERI, NAU

Main fuels in crown fires are <u>live foliage</u>

Branches, dead foliage also consumed depending on heat output

Larger branches and trunk often not consumed

Two basic classes of canopy (or "crown") fires

- ACTIVE crown fires
 - Propagate directly through the forest canopy from tree to tree
 - Generally highest temperatures and most extreme behavior
- PASSIVE crown fires
 - Canopy burning is "supported" from below by intense surface fire
 - Can have significant effects because flames are continuous ground to canopy

Fire behavior by fuel strata:

	GROUND	SURFACE	CANOPY
Rate of spread	Slow	Fast	Fast
Residence time	Long (hours- weeks)	Short (seconds- minutes)	Short (minutes)
Maximum temperature	Low (300-500 ^o C)	Moderate (500-800 ^o C)	High (> 800 ^o C)

Fire and grasslands: A 5-million year long love affair

Forest surface fire regimes

- Widely distributed in North America
- Generally high-frequency, short intervals
- Associated with generally open stand structures, high crown lift
- Size-dependent mortality (lowest in large adult trees, highest in seedlings and saplings)

Woodland and savanna fire regimes

Grasslands and savannahs

Piñon-Juniper woodlands

Canopy/stand replacing fire regimes

Canadian Forest Service

Chaparral fire regimes

Photos: California Depts. of Forestry and Fish & Game

Mixed severity fire regimes

Fire regimes are not always constant over time and space

- Many forests may have "mixed severity" fire regimes:
- <u>Spatially</u> heterogeneous at one moment in time (*e.g.* burn severity maps)
- <u>Temporally</u> heterogeneous for any place over time (change over time)
- Reconstruction difficult because evidence may be obscured by high-severity events

Brown

Figure 1-2-Fire regime types based on Kuchler's Potential Natural Vegetation types (prepared by Jim Menakis).

Fuel models relate to the fire regime – recall that:

- Fuel models are is a way of characterizing the typical vegetation of a location
- Simplify some of the complexity among ecosystems
- Provide a range of <u>fuel mass</u> values (kg/ha) in different fuel sizes – this related to the plant community and thus indicative of fire regime

Fuel Model 2: Timber with grass understory 10-30-S290-EP

So:

- Certain fuel models are characteristic of any ecosystem
- 2. Thus, properties of the ecosystem tend to group into certain kinds of fire behavior
- 3. This is the basis for geographically consistent fire regimes

What drives temporal variation in fire regimes?

- "temporal" : over time
- Topography: pretty constant over time scales of decades to millennia
- Vegetation: change at century to longer scales can be abrupt
- Climate: main time-varying factor

Widespread fire years are almost always associated with regional drought conditions

Left: Reconstructed Palmer drought index for 1748

Right: Reconstructed fire occurrence for 1748

Next: fire regimes in grasslands and prairies

Work on your fire project selections and Fire Ecology exercise

