Evolving Partnerships for Integrating Climate and Forecast Information into Fire Management Planning in the Western United States

> Anthony Westerling California Applications Program

> > NOAA OGP, USFS, CEC

 Wildfire risks driven by climate on regional scales

 Time scales: Hours to Days, Seasonal to interannual variability, decadal variability

Complex institutional structure

Figure 2: Wildland Fire Management Organizational Flowchart

Multiple opportunities / applications

Southern California												
Decisions	J	F	М	Α	Μ	J	J	А	S	0	Ν	D
Suppression												
Rx and Fire Use												
Seasonal Staffing												
Budgeting												
Special: Santa Ana												

Northern California												
Decisions	J	F	Μ	А	Μ	J	J	А	S	0	Ν	D
Suppression												
Rx and Fire Use												
Seasonal Staffing												
Budgeting												
Special: Pile Burning												

Arizona & New Mexico												
Decisions	J	F	Μ	Α	Μ	J	J	А	S	0	Ν	D
Suppression												
Rx and Fire Use												
Seasonal Staffing												
Budgeting												
Special: Monsoon												

Role of CLIMAS Workshops

- Interaction with scientists and managers in workshops
 - Structured
 - Designed to elicit manager's views on forecast tools (skill, confidence, resolution, timing, etc)
 - Contact with diverse audience
 - USFS, NPS, BLM
 - Operations, Management/Planning, Science
 - Diverse levels of capacity, interest

Some Benefits

- Ideas for applications
- Establish relationships with multiple potential partners
 - Fire management (forecasting, operations and planning), Federal researchers, Academia

Taking the Initiative

- Entrepreneurship
 - Us: we developed data sets, tested models, developed prototype forecasts
 - Price of entry demonstrated value
 - Them: NIFC predictive services identified our work through conference proceedings abstracts, interaction in workshops and conferences

How do we get from research to operational applications?

- Resources
 - Shouldn't stakeholders contribute resources at some stage?
 - Challenge: (our) research-to-applications too applied for their research program, too esoteric for operations?
 - Not formally funded as transition project, but USFS is a big organization...

How do we get from research to operational applications?

- Predictive Services identified our research as being of value for specific applications
- Encouraged collaborations from within
 - Resources
 - Partnerships
 - Data
 - Applications
 - Competition?
- Unofficial imprimatur?
 - Gradual transfer of research and forecast technology to multiple Forest Service researchers (RMRS, SRS, Northwest GACC)
 - Eventually it wont be my product that they use
 - But elements of my research will be incorporated

It's a Two-way Street

- "They" are learning from us
 - Data sets
 - Forecast methods
 - Forecast limitations
- "We" are learning from them
 - Data sets
 - Applications
 - Forecast methods
 - Forecast limitations

Defining Characteristics

- Public Stakeholders are large Federal Agencies
- Diverse Resources and Capacities
- Lead Agency
 - USFS has considerable resources:
 - research bureaucracy
 - Cross-cutting, centralized.
 - NPS research infrastructure based in individual parks
- Multiple, overlapping (competing?) research collaborations
- Entrepreneurship
- Inter/Intra agency Coordination

USFS Forecast Development & Assessment

- USDA Forest Service
- Budgeting
- 2yr Fiscal cycle
- Wanted: Longer lead times, custom area
- Reallocation across activities, regions
- Suppression budget variability dominated by temperature sensitive forest wildfire regimes
- T forecasts -> improved seasonal forecasts
- Challenge: A categorical forecast
- Challenge: Timing

Decision Calendars for Wildfire Management

Northern California												
Decisions	J	F	М	Α	Μ	J	J	А	S	0	Ν	D
Suppression												
Rx and Fire Use												
Seasonal Staffing												
Budgeting												
Special: Pile Burning												

With B. Morehouse and T. Corringham

Application: Forecasting for Forest Service Suppression Budgeting

NR Suppression Costs vs MAMJJA T

... But it's really only good for a *categorical* forecast

We Use Patterns in March Sea Surface Temperature and PDSI

after Alfaro, Gershunov and Cayan 2005

Table 2: Northern Rockies Contingency Table: Observations versus Forecasts of									
Extreme Fire YearsOSuppression Costs									
	Forecast								
Observed	< \$65 Million	> \$65 Million							
< \$65 Million	21	1							
> \$65 Million	0	5							

Really is a categorical forecast....

But somehow...

2005 Forest Service "Early Warning" Suppression Cost Forecast and Confidence Bands

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture.