Air Quality Extreme Events and Projected Trends for the Southwestern United States

Erika Wise

University of Arizona

Climate Prediction Applications Science Workshop March 22, 2006 Tucson, AZ

Project Context

 Established to assess impacts of climate variability and change on human and natural systems in the Southwest

 Air quality initiative: help air quality planners and managers understand links between climate and pollutants to improve decision-making capabilities

 Previous study: meteorologicallyadjusted, long-term trends (Wise and Comrie 2005)

Research Needs

Source: Liverman and Merideth 2002

 Focus on ozone and PM

- NAAQS regulations
- Known detrimental effects (health, environment, visibility)

Cities in the Southwest are often close to violating federal standards

 Local climate and weather conditions often determine whether levels are exceeded

 Probabilities of exceedances, now and in the future

Objectives

Meet research needs regarding extreme events and future conditions by:

 Characterizing ozone and PM air quality exceedances under current conditions using extreme value methods

 Downscaling climate model scenarios to determine probable changes in ozone/PM meteorology and resulting changes in return levels

Background: Predicted Changes

Climate

- Warmer: 5-6°C
 projected for West
 by 2100
- Less certainty with precipitation; more model-dependent

Air quality

- Ozone-focused
- Globally: uncertain
- Western US: higher ozone (Prather et al. 2002; Leung and Gustafson 2005)

Data

Ozone and PM data

- Local, state, and federal environmental agencies
- Ozone: maximum daily 8-hr average
- PM: 24-hour average PM₁₀

 GCM scenarios: Hadley Centre's HadCM3; SRES A2 and B2 scenarios

NCEP reanalysis meteorological variables

♦ Tucson, AZ

Methods: Extreme Values

 Central Limit vs. Extreme Types Theorem – Normal vs. GEV/GP distributions

Used to estimate:

- Return Period
 - Probability that threshold is exceeded in a given time period
- Return Level
 - Magnitude of the return period

 Applied using R-source ExtRemes (Gilleland and Katz 2004 / NCAR)

Methods: Statistical DownScaling Model (SDSM - Wilby et al. 2002)

 Combines stochastic weather generator and regression-based approaches

 Model calibrated using observational predictors / predictand

 Modeled relationships and GCM predictors generate future scenarios
 1990-2001 / 2002-2050 / 2051-2099

Results: Observed Extremes

Shape parameter = -0.24 (beta)

Shape parameter = 0.12 (Pareto)

Results: Ozone Return Levels (Current Conditions)

Results: PM Return Levels (Current Conditions)

Return Period (yrs)	Return Level (µg/m3)	Confidence Interval (µg/m3)
1	100	93-109
10	146	128-167
100	207	173-241

Results: SDSM Calibration and Verification

Calibration: 1990-1995

 Observed predictand (ozone/PM) and NCEP climate predictors

Verification: 1996-2001

Observed and modeled output

	Tucson Ozone	Tucson PM
NCEP Predictor Variables	500 hPa divergence	Mean sea level pressure
	850 hPa airflow strength	500 hPa geopotential height
	Relative humidity at 500hPa	Relative humidity at 850hPa
	Near surface relative humidity	Near surface relative humidity
	Surface specific humidity	
	Mean temp at 2m	
R^2	0.348	0.277

Results: Modeled Future Ozone

Aug

Sep

Oct

Nov

Dec

Results: Modeled Future PM

— B2

Sep

Oct

- Baseline

Nov

Dec

Results: Modeled Ozone Extremes

Return Period (yrs)	1990-2001 Return Level (CI)	2002-2050 Return Level (CI)	2051-2099 Return Level (CI)
1	79 (78-80)	81 (81-82)	87 (86-88)
10	85 (83-87)	89 (88-91)	96 (94-98)
100	88 (86-92)	95 (92-97)	103 (100-106)
			parts per billion

Return Period (yrs)	2002-2050 Return Level Increase from Baseline	2051-2099 Return Level Increase from Baseline
1	2.53%	10.13%
10	4.71%	12.94%
100	7.95%	17.05%

Results: Modeled PM Extremes

Return Period (yrs)	1990-2001 Return Level (CI)	2002-2050 Return Level (Cl)	2051-2099 Return Level (Cl)
1	85 (79-94)	81 (79-83)	83 (82-86)
10	132 (110-155)	105 (99-115)	107 (101-114)
100	213 (168-258)	133 (118-148)	131 (120-143)
			µg/m³

Conclusions

Characterization of air quality exceedances under current climate conditions:

Ozone:

 1-yr return period for exceedances (80 ppb)
 100-yr return level = 90 ppb

 PM:

 10-yr return period for exceedances (150

- ug/m3)
- -100-yr return level = 207 µg/m³

Conclusions

Downscaled GCM projections applied to air quality:

- SDSM models correspond well with observed validation period air quality
 - Mean, max ozone
 - Mean PM
- Ozone
 - Monthly means increase 4-5 ppb in summer and autumn
 - Increases in summer seasonal max up to 10 ppb
- ♦ PM
 - Summer monthly mean increases up to 9 µg/m³
 - Winter decreases (but within confidence interval)

Conclusions

Modeled climate influence on future extreme events:

Ozone

- Increases in return levels at 1-yr (10%), 10-yr (13%), and 100-yr (17%) return periods by 2099
- Quadrupling of exceedance rate/yr by 2099

PM

- Projected decreases from 1990-2001 to 2002-2050
- No change 2002-2050 to 2051-2099
- 21st-century 100-yr return levels below NAAQS

Future Research

 Compare return levels and climate sensitivity with other Southwest cities

 Modification of PM calibration period, statistical methods, or threshold for better simulation of extremes

 Incorporation of emissions scenarios / chemical transport

Thank You!

Acknowledgments:

- Climate Assessment for the Southwest project
- National Oceanic and Atmospheric Administration
- Dr. Andrew Comrie
- Pima Department of Environmental Quality
- National Center for Atmospheric Research

