
Water Shortage Sharing Agreements: An Application for Climate Prediction

Dr. Bonnie Colby and Katie Pittenger

Department of Agricultural and Resource Economics University of Arizona

Water Supply Variability Risks

- Reduced water deliveries to customers
- Reduced hydropower generation
- Difficulty complying with environ. regs
 - surface water quality standards
 - flows for habitat, fish recovery, etc.

Costs of Water Supply Variability

- Acquiring dry year supplies
- Higher electric power costs
- Increased water treatment costs
- Conflict, regional coordination efforts

Dry year supply reliability a challenge *throughout* the West!

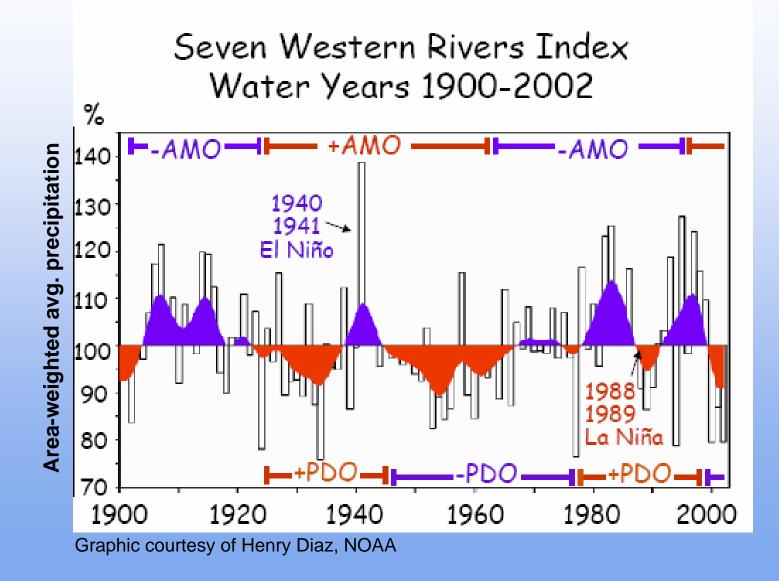
Hot spots: recent efforts to acquire water

Advantages of Temporary Dry-Year Transfers

- Voluntary, negotiated compensation
- Price negotiations can reflect market and climactic conditions
- Compared to permanent acquisitions:
 - lower transaction costs
 - reduced third-party impacts (econ., env.)
 - can't be shifted to supply new growth

Different Ways to Structure Temporary Water Transfers

- Regional Water Banks
- Spot Markets
- Long term Dry-Year Option contracts


Dry-Year Options Contracts

- Voluntary, temporary drought-triggered transfers
- Ownership of water right unchanged
- Can maintain ag base while meeting M&I and environmental drought needs
- Compensation for net crop income foregone PLUS...

Dry-Year Options Contracts

- Requires sound working relations between district and irrigators
- Cost needs to be justified by increased reliability provided
- But dry-year options cost *much* more (per af/year) than outright purchases

Climate Cycles and Water Supply

Using Climate Science To Improve Dry-Year Agreements

- Improve water use planning & adaptation
 - Crop rotations, labor contracts, technology
 - Financing water acquisition costs
- Tailor option prices & 3rd party compensation based on:
 - Lead time to fallow land
 - Volume of shortage, acres fallowed
 - Duration of shortage, fallowing

California Emergency Drought Water Leasing

- 1991, offered farmers \$125 per acre-foot
- Acquired 820,000 acre-feet
- Only wanted 655,000 acre feet
- BUT rapidly acquired water for drought needs
- 1992, offered \$50 per acre foot
- Acquired 154,000 acre feet

Klamath Basin: Dry Year Fallowing

- Paid **\$300/acre**, 2002
- Paid **\$188/acre**, 2003
- Paid \$65/af, 2004, bid solicitation process
- Bids accepted based on lowest cost per acre-foot of water "saved"
- Savings estimated with crop & soil data

3rd Party Impacts Example: Imperial-San Diego Transfer

In 2005:

- 30,000 AF transferred
- SDCWA paid IID \$276/AF
- Third-party impacts **\$132/AF** (after-tax third-party income and local tax receipts)

Summary of Western Water Leases, 1986 - 2005

STATE	Number of Leases	Avg. Volume (AF)	Avg. Price/AF (\$2005)
AZ	48	93439	100.57
CA	204	31570	122.31
CO	72	3104	141.74
ID	53	55541	32.94
MT	10	2900	20.17
NM	51	9398	53.94
NV	4	18600	66.94
OR	46	16441	68.83
TX	143	8271	165.47
UT	17	7704	32.50
WA	27	3938	85.88
WY	30	2826	54.86
AVG	59	21144	78.85

Modeling Lease Prices With Climate Variables

Climate Variables:

- Palmer Hydrologic Drought Index
- SPI
- SOI
- Other useful climate variables?

Modeling Lease Prices With Climate Variables

Preliminary Results:

- Arizona
 - PHDI insignificant
 - Reflects constrained AZ water markets
- Colorado
 - PHDI significant and negative
 - Statistical relationship between dry conditions and higher price of leased water

Summary

- Dry-year temp. transfers effective way to address supply variability
- Shortage sharing agreements can be improved through Climate Science
 - Planning and adaptation
 - Cost-effectiveness
- Ongoing work:
 - Climate impact on cost of temp. transactions