Decision Making under Uncertainty: Climatic Variability, Stakeholders, and Modeling in the Colorado River Basin

> Dustin Garrick Water Resources Research Center Department of Geography University of Arizona (With Kathy Jacobs and Gregg Garfin)

Climate Prediction Applications Science Workshop, 3.23.2006

Research Overview

- Project Scope & Research Question
- Decision Making Context
- Stakeholder Engagement
- Modeling and Uncertainty in CR long range planning
- Arizona Stakeholder Recommendations
- Conclusions

Decision Making Context: Climatic Variability & Growth in the CR Basin

- Institutionalized Over-allocation
- Shortage as the norm
 (Christensen et al 2004)
- Intensifying reliance on CRSS
- Expanding Stakeholder / Modeling Interface

Climate Disruption's Effects in the Colorado River Basin: A "Best-Case" Scenario

	Time Period	
Projected Changes	2010-2039	2040-2069
Temperature	+ 1.8° F	+ 3.6° F
Precipitation	- 3%	- 6%
Snowpack	- 24%	- 30%
Runoff	- 14%	- 17%
Water Storage	- 36%	- 40%

Source: Top Right, Enhancing Water Supply Reliability (2005); Others, Rocky Mountain Climate Organization (2005) Stakeholder-Driven Research Agenda

What are the key modeling assumptions and sources of uncertainty in CRSS? What are the **long-term planning** implications of these assumptions?

How can modeling outputs be tailored to aid decision making under uncertainty? Who are the stakeholders? Direct State DWR Central Arizona Project Salt River Project Municipal Water User Groups Indirect **On-River Users** Irrigation Districts **Power Providers Conservation Groups**

Stakeholder / Modeling Nexus Colorado River Simulation System

Table 1: Major planning processes in the Colorado River Basin according to model type.

Selected Long-Range Hydrologic Determination Interim Surplus Guidelin Planning Operating Criteria (1988) (2001) Processes (1968) Multi-Species Conservation Model Hydrologic Studies CRSS in RiverWare (1998)	
Planning Operating Criteria (1988) (2001) Processes (1968) Multi-Species Conservation Model Hydrologic Studies (2005) Model Proto-CRSS Fortran-encoded CRSS CRSS in RiverWare (1998)	es
Processes (1968) Multi-Species Conservation Model Hydrologic Studies (2005) Proto-CRSS Fortran-encoded CRSS CRSS in RiverWare (1998)	
Model Hydrologic Studies Proto-CRSS Fortran-encoded CRSS CRSS in RiverWare (19)	on Plan
Model Hydrologic Studies Proto-CRSS Fortran-encoded CRSS CRSS in RiverWare (19)	
Model Proto-CRSS Fortran-encoded CRSS CRSS in RiverWare (19	
Type	96)
Rule Curves	
Versions developed for direct stakeholder use CRS	S-Lite
$\rightarrow \begin{array}{c} CRSS-EZ (1994) \\ (200) \end{array}$	5)
1970 1975 1980 1985 1990 1995 2000 200	;

Other Simulations: Severe Sustained Drought (1995); Christensen et al (2004)

24-month Model

University of Colorado at Boulder

CU-Boulder's RiverWare Modeling Tool Played Key Role In Colorado River Negotiations

Feb. 14, 2006

Across the West this month, local newspapers reported that the seven Colorado River states finally reached an agreement on a consensus recommendation for managing the river under drought conditions, as directed by Secretary of Interior Gale Norton.

NewsCenter

This was especially exciting news to researchers at the University of Colorado at Boulder's Center for Advanced Decision Support for Water and Environmental Systems or CADSWES, who developed and support RiverWare, the modeling tool that played a key role in this long and difficult negotiation.

"RiverWare <u>empowers stakeholders</u> such as the Colorado Basin states to develop and evaluate operational plans that previously could only be modeled by the water management agencies"

strategies on the water supply to the seven states and Mexico during a range of hydrologic scenarios, including extreme droughts.

The Bureau of Reclamation used RiverWare to provide technical modeling support to the Basin States Technical Modeling Work Group Committee over the past 18 months. RiverWare, which also is used by individual states and water districts, is provided by CADSWES through the CU Office of Technology Transfer.

Carly Jerla, while a graduate student at CADSWES, developed a special version of the Bureau of Reclamation's RiverWare model of the Colorado River as part of her research on new drought management strategies for the basin. Both the model and her research results have proven to be useful to the states in reaching a mutually agreeable proposal. Now a bureau employee, Jerla maintains an office at CADSWES where she continues to provide technical modeling support to interested stakeholders while maintaining close ties with the developers and support staff.

"The Basin States discussions over the past 18 months were truly informed discussions all the way up through the final hours of negotiation," Jerla said. "Our ability to quickly produce various model runs to inform their discussions kept the process moving forward on the technical front."

The Basin States committee's proposal was sent to Norton on Feb. 3 and will be considered in the development of alternatives to be studied by the Bureau of Peclamation as provided by the National Environmental Policy Act. A draft

Data & Research Approach

- Ongoing Stakeholder Engagement
- Two Basin-wide planning processes
- 1. Surplus (1996 2001)
- 2. Shortage (2004 -?)
- **3**. AZ Shortage Sharing

 CRSS modeling assumptions and outputs

f (inflow, depletion, physical process, operating criteria)

- 1. Inflow: Index Sequential Method
- **2**. Depletion: Upper Basin
- **3**. Operating Criteria: Surplus Guidelines & 602 (a) criteria
- 4. Initial Reservoir Conditions

Modeling Assumptions Inflow: Index Sequential Method

Table 2: 97-year Traces in Index Sequential Method (Wrap-Around Concept)				
Trace	Initial Year	Second Year	Second to Last	Last Year
	(year 1)	(year 2)	(year 96)	(year 97)
1	1906	1907	2002	2003
2	1907	1908	2003	1906
97	2003	1906	2001	2002
			Ad	apted from USBR 1988

Historical Record: 1906 to 2003*

Implication: future flows will vary within the range of variability experienced during the historical record; 1999-2004 was novel

Modeling Assumptions Inflow: Index Sequential Method

Source: Department of Interior, 2001

Modeling Assumptions Demand: Upper Basin Depletion

Figure 3: Shortage Probability and Upper Basin Depletion Projections

Lower Basin & Upper Basin differ in projections of growth rate; limit

Operational Assumptions: 602 (a) Storage

Table 3: Key parameters of the 602 (a) storage calculation			
602 (a) parameter	Description	Current model input assumption	
UB Depletion	Average of next 12 years of projected demand	NA	
UB Evaporation	Average annual evaporation	560,000 acre feet	
% Shortage	Percent shortage applied to UB	0%	
Minimum Objective Release	Annual minimum release from Lake Powell to Mead	8.23 million acre feet	
Critical Period Inflow	Average annual natural inflow into the Upper Basin from 1953 to 1964, which is considered the critical low inflow period.	12.18 million acre feet	
Minimum Power Pool	Amount preserved for power pool in Upper Basin	5.19 million acre feet	
Source:			

Final Environmental Assessment (March 2004) – Adoption of Interim 602 (a) Storage Guideline

Initial Conditions: The three- to five-year blinders

Table 4: Impact of Starting Reservoir Conditions

Initial Conditions Option	Option 1: January 2002	Option 2: Jan 2003	Option 3: Jan 2003
	(Projected by April	(Projected in August	(Actual end-of-
	2001 model forecast)	2002 model forecast)	December 2002
			levels)
System Storage (maf)	52.33	36.24	36.76
Lake Mead	1182 ft / 70.6 %	1151.5 ft / 58.3%	1152 ft / 58.6%
(Elevation; % capacity)			
Lake Powell	3669.9 ft / 89.9 %	3617.76 ft / 50.1 %	3620.1 ft / 51%
(Elevation; % capacity)			
Source: US Bureau of Reclamation, Colorado River Modeling Group Meeting (2003)			

The Worst-Case: Aligning Assumptions

Table 5: Combining Assumptions to Form Best- and Worst-Case Scenarios

Key Assumptions	Shortage Probability		
	HIGHER	LOWER	
Inflow	Prolonged drought (e.g. 1999-2004)	Extended high flows (e.g. 1983-1986)	
Demand – UB	Limit: 5.4 maf Rate: UCRC	Limit: 4.8 maf Rate: AWBA	
Operating Policy: Surplus Criteria	Interim Surplus Guidelines	70R Strategy	
Initial Conditions	Jan. 2005 (i.e. 50% capacity)	Jan. 2000 (i.e. nearly full)	

Arizona Stakeholder Recommendations (2005)

- ✓ Articulate and document the assumptions in model runs
- Isolate the drivers of variability through sensitivity analyses and consistent constants
- Establish bounds on uncertainty by defining best and worst case scenarios
- Evaluate river system in terms of water user impacts instead of reservoir levels or other indirect measures

 \checkmark

- ✓ Distinguish between sources of uncertainty over different time scales
 - Foster trust, patience to deal with stakeholder groups with diverse levels of understanding and experience

Decision Making under Uncertainty Colorado River Shortage

- Shortage EIS using CRSS lite to compare alternatives
- Coordinated management of Lakes Powell and Mead
- Resolution at different scales
- Augment water supplies
- Flexibility; Interim Accord
- Key: Operational Uncertainty and Legal Framework constrain Basin adaptation

Thank you

Submitted, March 2006. Journal of American Water Resources Association.

Enhancing Water Supply Reliability

Acknowledgements: Kathy Jacobs, Gregg Garfin, Terry Fulp, and Kenneth Seasholes

LAKE MEAD ELEVATIONS	1220' (95% full)
FLOOD CONTROL SURPLUS	1204' (86% full)
QUANTIFIED SURPLUS	1198' (83% full)
FULL DOMESTIC SURPLUS	1145' (58% full)
PARTIAL DOMESTIC SURPLUS	1125' (51% full)
NORMAL SUPPLY Minin	num Power Pool 1083' (37% full) 1075' (34% full)
400 KAF REDUCTION Bottom of Firs	st SNWA Intake 1050' (27% full)
500 KAF REDUCTION	1025' (21% full)
600 KAF REDUCTION Bottom of Seco	nd SNWA Intake 1000' (16% full)
ADDITIONAL REDUCTIONS ? Minimum Mead	Intake Elevation 915' (2% full)
Тор	of Dead Storage 895' (0% full)

Coordinated Management

Powell Elevation (feet)	Powell Operation	Powell Live Storage (maf)	Lake Mead End Of Month Elevation (Feet) Based on August 2005, 24 Month Study
3700	Equalize or 8.23 maf	24.32	1,180
3636 - 3664		15.54- 19.02	1,170 - History/Most Probable 1,160 - Maximum Probable
(see table below)	8.23 maf; if Mead < 1075 feet, balance contents with	(2008 - 2025)	1,150 - Full Domestic Surplus
3575	a min/max release of 7.0 and 9.0 maf	9.52	1,140 -
	7.48 maf 8 23 maf if Mead < 1025 fee	0.01	1,130 - Partial Domestic Surplus
3525	Balance contents with a	5.93	1,120
3370	min/max release of 7.0 and 9.5 maf	0	Jan-05 Feb-05 May-05 Jun-05 Jun-05 Jun-05 Sep-05 Sep-05 Jan-06 May-06 Jun-06 Jun-06 Jun-06 Jun-06 Coct-06 Nov-06 Dec-06 Coct-06 Dec-06