CPASW March 23, 2006

INTEGRATED FORECAST AND MANAGEMENT IN NORTHERN CALIFORNIA – INFORM A Demonstration Project

Present: Eylon Shamir HYDROLOGIC RESEARCH CENTER

GEORGIA WATER RESOURCES INSTITUTE

Shamir@hrc-lab.org

INFORM:

Integrated Forecast and Management in Northern California

Hydrologic Research Center & Georgia Water Resources Institute

Sponsors:

CALFED Bay Delta Authority California Energy Commission National Oceanic and Atmospheric Administration

Collaborators:

California Department of Water Resources California-Nevada River Forecast Center Sacramento Area Flood Control Agency U.S. Army Corps of Engineers U.S. Bureau of Reclamation

Eylon Shamir: EShamir@hrc-lab.org

Vision Statement

 Increase efficiency of water use in Northern California using climate, hydrologic and decision science

Goal and Objectives

- Demonstrate the utility of climate and hydrologic forecasts for water resources management in Northern California
- Implement integrated forecast-management systems for the Northern California reservoirs using real-time data
- Perform tests with actual data and with management input

Major Resevoirs in Nothern California 41.5 Sacramento River 41 Pit River **Trinity** Shasta Trinity River 40.5 **Degrees North Latitude** Feather River 40 39.5-Oroville N. Fork American River 39 Folsom 38.5 121 120.5 123.5 123 122.5 122 121.5 **Degrees West Longitude** 0 500 1000 1500 2000 2500 3000 3500 4000 Elevation (meters)

Application Area

Capacity of Major Reservoirs (million acre-feet): Trinity - 2.4 Shasta - 4.5 Oroville - 3.5 Folsom - 1

Eylon Shamir: EShamir@hrc-lab.org

The hydrologic objectives complexity

- Objectives
- Comply with water supply to the delta
- Flood mitigation and control
- Water resources (2/3 of California potable water)
- Fishery (Salmon hatching) (manage water temperature)
- Agriculture in the Central Valley (7 million acres of irrigated AG)
- Hydro power generation
- In-stream ecology
- Recreation
 - Issues
 - Increasing Demand (California's Growing economy)
 - Aging infrastructure
 - Climate Change in the Sierra Nevada
 - Environmental Regulations

Utility of hydrologic forecast: A retrospective study for Folsom Lake

Compare between:

- current operational rules (nowcast with no forecast) and 1970-1992 forecast was generated every 5-day with daily resolution for 2-month horizon from:
- NWS procedure for Ensemble Streamflow Prediction (ESP)
- Monthly estimates of precipitation and temperature from two Global Climate Models (GCM)
 - a) Canadian model (CGCM)
 - b) Max Plank Institute of Meteorology (ECHAM)
- Perfect forecast scenario (retrospective) data
- Georgakakos et al. 2005 EOS
- Carpenter and Georgakakos 2001 J. of Hydrology
- Yao and Georgakakos 2001 J. of Hydrology

Results of operation based on rigid operational rules

Carpenter and Georgakakos (2001); Yao and Georgakakos (2001); Georgakakos et al., (2004)

Eylon Shamir: EShamir@hrc-lab.org

The problem

Synoptic and climatic forecast contain uncertainty

- The effective use of these needs to explicitly account for the uncertainty both in the forecast and the operational management
- Reservoir is operated based on nowcast information and under institutional constrains
 - Rigid rules that provide list of actions based on current information

Demonstration Concept

The modeling Components

Eylon Shamir: EShamir@hrc-lab.org

DSS – Multi Objective and temporal scale

Management Agencies/User Organizations

HRC

Eylon Shamir: EShamir@hrc-lab.org

Precipitation Downscaling – Performance Measures

Eylon Shamir: EShamir@hrc-lab.org

Temperature Downscaling - Tests

Eylon Shamir: EShamir@hrc-lab.org

Examples of Hydrologic Performance Analysis – Time Series

OROVILLE DAILY FLOW - CMS

Eylon Shamir: EShamir@hrc-lab.org

Examples of Hydrologic Performance Analysis – Monthly Climatology

Eylon Shamir: EShamir@hrc-lab.org

SAMPLE RELIABILITY DIAGRAMS

Eylon Shamir: EShamir@hrc-lab.org

Conclusion of Hydrologic Performance Analysis

- INFORM hydrology model performed well and captured the hydrologic response with respect to timing and magnitude, and for various temporal scales
- Performance analogous to what was found for the operational CNRFC hydrology forecast model running with the same parameters
- Ensemble Streamflow Predictions (ESP) have been validated over the historical horizon for all reservoir sites

Sample of INFORM Product

Eylon Shamir: EShamir@hrc-lab.org

Web Dissemination

HR C

📚 Google Earth

Eylon Shamir: EShamir@hrc-lab.org

Forecast issued: March 9, 2006 22:00 PST

48-HR ENSEMBLE AVERAGE ACC. PRECIP (INCHES) PERIOD ENDING: 2006/03/11/22:00 PS1 2006/03/10/06:00 (M)

001 01 0.35 0.5 0.75 1 1.25 1.5 1.75 2

15+OAT ENSEMBLE AVERAGE ACC. PRECIP. (INCHES): PERIOD ENDING 2006/03/24/22:00 PS1 INT1 2006/03/10/06:00 DWT

38.5% 125W 124.5W 124M 125W 122W 122.5W 122W 121.5W 121W 120.5W 120W 119.5W 118.5W 118.5W 118.5W

01010205050751 152 3 3 10 12 14 16 20 24

Forecast issued: March 9, 2006 22:00 PST

24-18 FXDBAD IT PRCDF. > 1.0 MDB PREDI ENDING: 2006/02/10/22-00-PST 2006/03/10/06:00 CMT

AN-HE PROMAGE (* PROCES > 2.3 INCRES P0000 (NDMD 2006/01/11/22-00 P51 2006/03/10/06/03 (M1 425 11.754 41.55 41.251 618 12.758 10.58 13 298 63% 38,754 39.54 38.234 200 38 754 16.5% Inter the trace to a construction to the trace to a construction to the trace the trace the 6.125 6.25 6.375 0.3 1.625 0.75 0.875

Eylon Shamir: EShamir@hrc-lab.org

FUTURE PLANS

INFORM quasi-operational testing during Winter 2005 and performance assessment

- Use the INFORM structure for assessing climate and demand change impacts on management for conservation, flood control, downstream objectives and energy production
- What-if simulations for training, preparation and modification of current operational procedures

