Does Father Absence Place Daughters at Special Risk for Early Sexual Activity and Teenage Pregnancy?


The impact of father absence on early sexual activity and teen pregnancy was investigated in longitudinal studies in the United States (N = 242) and New Zealand (N = 520), in which community samples of girls were followed prospectively from early in life (5 years) to approximately age 18. Greater exposure to father absence was strongly associated with elevated risk for early sexual activity and adolescent pregnancy. This elevated risk was either not explained (in the U.S. study) or only partly explained (in the New Zealand study) by familial, ecological, and personal disadvantages associated with father absence. After controlling for covariates, there was stronger and more consistent evidence of effects of father absence on early sexual activity and teenage pregnancy than on other behavioral or mental health problems or academic achievement. Effects of father absence are discussed in terms of life-course adversity, evolutionary psychology, social learning, and behavior genetic models.

In modern Western societies, adolescent girls face a biosocial dilemma. On the one hand, the biological capacity to reproduce ordinarily develops in early adolescence; on the other hand, girls who realize this capacity before adulthood often experience a variety of negative life outcomes. Specifically, adolescent childbearing is associated with lower educational and occupational attainment, more mental and physical health problems, inadequate social support networks for parenting, and increased risk of abuse and neglect for children born to teen mothers (e.g., Furstenberg, Brooks-Gunn, & Chase-Lansdale, 1989; Konner & Shostak, 1986; Woodward & Fergusson, 1999). Despite these consequences, the United States and New Zealand have the first and second highest rates of teenage pregnancy among Western industrialized countries. Approximately 10% of girls in the United States and 7% of girls in New Zealand between the ages of 15 and 19 years become pregnant each year, with around half of these pregnancies culminating in a live birth (Cheesbrough, Ingham, & Massey, 1999; Dickson, Sporle, Rimene, & Paul, 2000). Given these costs to adolescents and their children, it is critical to identify life experiences and pathways that place girls at increased risk for early sexual activity and adolescent pregnancy.

Many studies have identified the absence of the biological father from the home as a major risk factor for both early sexual activity (e.g., Day, 1992; Kiernan & Hobcraft, 1997; Newcombe & Udry, 1987) and teenage pregnancy (e.g., Geronimus & Korenman, 1992; Hogan & Kitagawa, 1985; McNamara, 1999). This finding is consistent with life-course adversity models of early sexual activity and teenage pregnancy, which posit that a life history of familial and ecological stress provokes earlier onset of sexual activity and reproduction (e.g., Belsky, Steinberg, & Draper, 1991; Coley & Chase-Lansdale, 1998; Fergusson & Woodward, 2000a; Robbins, Kaplan, & Martin, 1985; Scaramella, Conger, Simons, & Whitbeck, 1998). Life-course adversity models, however, do not attribute any special causal significance to father absence. Instead, these models conceptualize father absence as just one of many factors that can undermine the quality of family environments. According to life-course adversity models, it is not father absence per se but various

---

Bruce J. Ellis, Department of Psychology, University of Canterbury; John E. Bates, Department of Psychology, Indiana University; Kenneth A. Dodge, Center for Child and Family Policy, Duke University; David M. Fergusson and L. John Horwood, Department of Psychological Medicine, Christchurch School of Medicine; Gregory S. Pettit, Department of Human Development and Family Studies, Auburn University; Lianne Woodward, Department of Education, University of Canterbury.

In the United States, this work was supported by National Institute of Mental Health grants MH128018 and MH42488, and National Institute of Child Health and Human Development grant HD30572. In New Zealand, this work was supported by the Health Research Council, National Child Health Research Foundation, the Canterbury Medical Research Foundation, and the New Zealand Lottery Grants Board. We thank Jay Belsky, Ronald Dahl, and Satoshi Kanazawa for comments on earlier drafts of this article.

Correspondence concerning this article should be addressed to Bruce Ellis, Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand. Electronic mail may be sent to: bruce.ellis@canterbury.ac.nz.