

Shrub Proliferation, Brush Management, and Ecosystem Services

Scott Jones^{1,2}; Steve Archer²; Katharine Predick²

¹Arid Lands Resource Sciences, ²School of Natural Resources and the Environment, University of Arizona

Contact: Scottajones@email.Arizona.edu

Graduate Interdisciplinary Program in Arid Lands Resource Sciences

Scott Jones , Steve Archer, Rathanne i realex

Introduction

- Grasslands provide a myriad of important ecosystem services.
- Over the past 150 y many grasslands have experienced a proliferation of unpalatable shrubs.

- Brush management has been widely used to reverse shrub encroachment and recover forage production, stream flow and upland game habitat.
- Results are often short-lived or sub-par and seldom economically viable solely from a livestock production standpoint (Table 1).

Table 1: Brush treatment on Las Cienegas National Conservation Area, 2007-2010: treatments, acreages, and costs. Data courtesy of BLM and the Nature Conservancy.

Treatment Name	Treatment Type	Acres	Cost	Cost/Acre	Completed
Airstrip	Mastication and Spray	759	\$113,614	\$150	2007
Airstrip Re-Spray	Foliar Spray	277	\$111,473	\$402	2007
Maternity	Broadcast Burn	1920	\$47,296	\$25	2008
Lee Tank/Prairie Dog	Mechanical	41	\$8,395	\$205	2008
Oak Tree	Mechanical	332	\$74,858	\$225	2009
Cedar	Broadcast Burn	3639	\$32,095	\$9	2009
Trap 1 & 2	Mechanical	482	\$108,450	\$225	2010
Antelope	Mechanical	199	\$45,780	\$230	2010
Quail	Cut Stump	196	\$133,401	\$680	2010

• Shrub encroachment and brush management also affect a variety of other ecosystem services (e.g. carbon sequestration, soil fertility water quality) and impact grassland-obligate plants and animals, and hence biodiversity.

• We are poorly positioned to evaluate trade-offs among these services.

- A broader understanding of how shrub proliferation and brush management interact to impact services would enable:
 - More accurate/comprehensive assessments of the validity of brush management.
 - Development of guidelines for when, where, and under what circumstances to initiate brush management.

Goals/Objectives

Goals:

- Predict rates/patterns of shrub encroachment and recovery from brush management.
- Assess changes in the attending provision of a diverse portfolio of ecosystem services.

Objectives:

- 1) Quantify rates/patterns of shrub cover change on sites with contrasting soils and management histories using time-series (1936-2010) aerial photography.
- 2) Evaluate the efficacy of past brush management actions (dating back to 1960s).
- 3) Quantify changes to ecosystem services occurring with shrub encroachment and following brush management.

Addressing these goals and objectives will position us to evaluate the nature and magnitude of trade-offs among contrasting, and sometimes competing, land management scenarios.

Approach

- 1. Develop trade-offs matrices for bundles of ecosystem services.
 - Shrub encroachment impacts ecological, social, and economic components of sustainability.
 - Accounting for the influence of shrub encroachment/brush management on multiple services and understanding trade-offs among services will enable us to more accurately and objectively assess the true costs of doing – or not doing – brush management.

Figure 1: A conceptual framework showing ecosystem state transitions associated with shrub encroachment and subsequent brush management

- 2. Develop geospatial maps/layers of shrub encroachment rates and patterns and recovery from brush management.
 - Understanding spatial patterns of proliferation can be used for inference about underlying processes of encroachment.
- 3. Develop criteria for targeting/prioritizing diverse landscape elements for brush management actions.

Acknowledgements

Philip Heilman - Research Leader at the Southwest Watershed Research Center USDS-ARS, Gita Bodner - Conservation Ecologist with The Nature Conservancy, and Karen Simms - Acting Assistant Field Manager of LCNCA for their support. Also, The Nature Conservancy Tucson Office for access to the LCNCA aerial imagery database.

Methods

Study Site: Las Cienegas National Conservation Area (LCNCA), Southern AZ

- ~18,211 ha of state and federal lands.
- Includes five of rarest habitat types in the American Southwest.
- A "working landscape".
- Active brush management program (Tab. 1) (additional 8,055 ha targeted for treatment).

Rates and Patterns of Shrub Encroachment and Response to Brush Management:

- Utilize database of repeat aerial photos compiled by TNC (Fig. 2)
- Resampled images to a common resolution.
- Semi-manual two-step method to quantify shrub cover in GIS with landform, soil and land use overlays.

Figure 2: Time-series images of a LCNCA site that underwent brush management sometime between 1975 & 1990. (A) By 1970 site had become heavily encroached by mesquite. (B) 1992 image taken post brush treatment showing most mesquite has been cleared. (C) Site in 2010 which re-encroachment is evident. Images courtesy of The Nature Conservancy

Ecosystem Services on sites with contrasting shrub encroachment/brush management histories:

Provisioning/Supporting Services: Forage Production, Primary Production (grass + shrub) and Biodiversity:

 Point-intercept and belt transects to quantify cover by species; grass and shrub basal area at peak season converted to biomass using allometry relationships.

Regulating Service: Carbon Sequestration:

- Soil organic carbon (0-20 cm) under and between shrubs Supporting Service: Critical Habitat:
- Habitat suitability models created using literature reviews and expert knowledge. Used to weight variables to generate spatially explicit habitat suitability scores for land cover elements in GIS.

Trade-off Matrices:

• Create trade-offs matrices for variety of ecosystem services in contrasting management scenarios (Fig. 1).