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Outline 
•  Review 
•  Revisit self-weighting design 
•  Design a cluster sample 
•  Systematic sampling 
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Review: 2-stage equal probability 
cluster sampling (CSE2) 
•  CSE2 has 2 stages of sampling 

 
Stage 1. Select SRS of n  PSUs from population of 

N  PSUs 
 
Stage 2. Select SRS of mi  SSUs from Mi elements 

in PSU i  sampled in stage 1 
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Review: 2-stage cluster sampling 

Take an SRS of mi SSUs in sampled PSU i :

Sample all SSUs in sampled PSUs:

 
Stage 1 of 2-stage 
cluster sample 
(select PSUs) 

Stage 2 of 2-stage 
cluster sample  
(select SSUs w/in 
PSUs) 
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Review: Motivation for 2-stage cluster 
samples 
•  Recall motivations for cluster sampling in 

general 
–  Only have access to a frame that lists clusters 
–  Reduce data collection costs by going to groups of 

nearby elements (cluster defined by proximity) 
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Review: Motivation for 2-stage cluster 
samples – 2  
•  Likely that elements in cluster will be 

correlated  
–  May be inefficient to observe all elements in a 

sample PSU 
–  Extra effort required to fully enumerate a PSU 

does not generate that much extra information 
•  May be better to spend resources to sample 

many PSUs and a small number of SSUs per 
PSU 
–  Possible opposing force:  study costs associated 

to going to many clusters 
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•  Have a sample of elements from a cluster 
–  We no longer know the value of cluster parameter, 

ti 
•  Estimate ti  using data observed for mi  SSUs 

Review: CSE2 unbiased estimation for 
population total t 

∑
=

==
im

j
ij

i

i
iii y

m
M

yMt
1

ˆ



8 

Review: CSE2 unbiased estimation for 
population total – 2  
•  Approach is to plug estimated cluster totals 

into CSE1 formula 
–  CSE1 

–  CSE2 
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•  The variance of       has 2 components 
associated with the 2 sampling stages 
 1.  Variation among PSUs 
 2.  Variation among SSUs within PSUs 

Review: CSE2 unbiased estimation for 
population total – 3 
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•  In CSE1, we observe all elements in a cluster 
–  We know  ti     
–  Have variance component 1, but no component 2   

•  In CSE2, we sample a subset of elements in 
a cluster 
–  We estimate ti  with  
–  Component 2 is a function of estimates variance 

for  

Review: CSE2 unbiased estimation for 
population total – 4 
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Review: CSE2 unbiased estimation for 
population total – 5 
•  Estimated variance among cluster totals 

•  Estimated variance among elements in a 
cluster 
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Review: CSE2 unbiased estimation for 
population mean 
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Review: CSE2 ratio estimation for 
population mean 
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Review: CSE2 ratio estimation for 
population mean – 2  
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Review: CSE2 ratio estimation for 
population total  t 
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Coots egg example 
•  Target pop = American coot eggs in Minnedosa, 

Manitoba 
•  PSU / cluster = clutch (nest)        
•  SSU / element = egg w/in clutch    
•  Stage 1 

–  SRS of n = 184 clutches  
–  N = ???  Clutches, but probably pretty large 

•  Stage 2 
–  SRS of mi = 2 from Mi  eggs in a clutch 
–  Do not know M0 = ??? eggs in population, also large 
–  Can count Mi = # eggs in sampled clutch i 

•  Measurement 
–  yij = volume of egg j  from clutch i   
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Coots egg example – 2  

•  Scatter plot of volumes vs. i  
(clutch id)  
–  Double dot pattern - high 

correlation among eggs 
WITHIN a clutch 

–  Quite a bit of clutch to clutch 
variation 

•  Implies 
–  May not have very high 

precision unless sample a 
large number of clutches 

–  Certainly lower precision 
than if obtained a SRS of  
      eggs 368
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Could use a side-by-side plot for data with 
larger cluster sizes – PROC UNIVARIATE 
w/ BY CLUSTER and PLOTS option 
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Coots egg example – 3 

•  Plot 
–  Rank the mean egg volume for 

clutch i , 
–  Plot yij vs. rank for clutch i 
–  Draw a line between yi 1 and yi2   

to show how close the 2 egg 
volumes in a clutch are 

•  Observations 
–  Same results as Fig 5.3, but 

more clear 
•  Small within-cluster variation 
•  Large between-cluster variation 

–  Also see 1 clutch with large 
WITHIN clutch variation  

•  check data  (i = 88) 
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Coots egg example – 4 

•  Plot si  vs.       for clutch i  
•  Since volumes are always 

positive, might expect si  to 
increase as      gets larger 
–  If      is very small, yi 1 and  
yi 2 are likely to be very small 

and close  ->   small si  
–  See this to moderate degree 

•  Clutch 88 has large si , as 
noted in previous plot 
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Coots egg example – 5 
•  Estimation goal 

–  Estimate      , population mean volume per coot 
egg in Minnedosa, Manitoba 

•  What estimator? 
–  Unbiased estimation 

•  Don’t know  N =  total number of clutches or M0 =  total 
number of eggs in Minnedosa, Manitoba 

–  Ratio estimation 
•  Only requires knowledge of Mi , number of eggs in 

selected clutch i , in addition to data collected 
•  May want to plot      versus Mi  it̂

Uy
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Coots egg example – 6 

 
Clutch 

 
Mi 

 
iy  
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1  13  3.86 0.0094 50.23594  0.671901  318.9232 
2  13  4.19 0.0009 54.52438  0.065615  490.4832 
3  6  0.92 0.0005 5.49750  0.005777  89.22633 
4  11  3.00 0.0008 32.98168  0.039354  31.19576 
5  10  2.50 0.0002 24.95708  0.006298  0.002631 
6  13  3.98 0.0003 51.79537  0.023622  377.053 
7  9  1.93 0.0051 17.34362  0.159441  25.72099 
8  11  2.96 0.0051 32.57679  0.253589  26.83682 
9  12  3.46 0.0001 41.52695  0.006396  135.4898 
10  11  2.96 0.0224 32.57679  1.108664  26.83682 
… … … … … … … 

180  9  1.95 0.0001 17.51918  0.002391  23.97106 
181  12  3.45 0.0017 41.43934  0.102339  133.4579 
182  13  4.22 0.00003 54.85854  0.002625  505.3962 
183  13  4.41 0.0088 57.39262  0.630563  625.7549 
184  12  3.48 0.000006 41.81168  0.000400  142.1994 
sum 1757   4375.947  42.17445  11,439.58 
var    149.565814   

=rŷ   2.490579     
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Don’t  
know  
 

Use 

Coots egg example – 7 
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CSE2:  Unbiased vs. ratio estimation 
•  Unbiased estimator can poor precision if 

–  Cluster sizes (Mi ) are unequal 
–  ti  (cluster total) is roughly proportional to Mi  

(cluster size) 
•  Biased (ratio estimator) can be precise if 

–  ti  roughly proportional to Mi 
–  This happens frequently in pops w/cluster sizes 

(Mi) vary 



Summary of CS 
•  Cluster sampling is commonly used in large 

survey 
–  But with large variance 

•  If it is much less expensive to sample clusters 
than individual elements, CS can provide 
more precision per dollar spent. 
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Inclusion probability for an element 
under CSE2 (using SRS at each stage) 
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CSE2 weight for an element (unbiased 
estimator) 

26 
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CSE2:  Self-weighting design 
•  Stage 1:  Select n  PSUs from N  PSUs in pop using 

SRS 
–  Inclusion probability for PSU i : 

•  Stage 2:  Choose mi  proportional to Mi  so that 
 mi /Mi  is constant, use SRS to select sample 

•  Sample weight for SSU j in cluster i is constant for all 
elements 

N
n

i =π

Weight may vary slightly in practice because may not 
be possible for mi /Mi to be equal to 1/c for all clusters 
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Self-weighting designs in general 
•  Why are self-weighting samples appealing? 

•  Are dorm student or coot egg samples self-
weighting 2-stage cluster samples? 

•  What self-weighting designs have we 
discussed? 
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Self-weighting designs in general – 2  
•  What is the caveat for variance estimation in 

self-weighting samples? 
–  No break on variance of estimator – must use 

proper formula for design 

•  Why are self-weighting samples appealing? 
–  Simple mean estimator 
–  Homogeneous weights tends to make estimates 

more precise 



Self-weighting designs 
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Design a cluster sample 

•  Need to decide 4 major issues: 
–  1. What overall precision is needed? 
–  2. What size should the PSUs be? 
–  3. How many PSUs should be sampled? 
–  4. How many SSUs should be sampled in each 

PSU selected for the sample? 

31 



Design a cluster sample -2 
•  Q1 must be faced in any survey design. 
•  Q2-4: need know the cost of sampling a PSU, 

the cost of sampling a SSU, measure of 
homogeneity for the possible sizes of PSU.  
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Design a cluster sample -2 
•  Choosing the PSU size 

–  The PSU size is often a natural unit. 
–  In the case of you need to decide the PSU size, a 

general principle is: 
•  Larger the PSU size, the more variability you expect to 

see within a PSU. 
•  If the PSU size is too large, however, you may lose the 

cost savings of cluster sampling.  
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Design a cluster sample -3 
•  Choosing subsampling sizes: 

–  Assume Mi=M, and mi=m for all PSUs,  
–  Total cost=C=c1n+c2nm 
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Return to systematic sampling (SYS) 
•  Have a frame, or list of N  elements 
•  Determine sampling interval, k  

–  k  is the next integer after  N/n 
•  Select first element in the list 

–  Choose a random number, R , between 1 & k 
–  R-th element is the first element to be included in 

the sample 
•  Select every k-th  element after the R-th 

element 
–  Sample includes element R, element R + k, 

element R + 2k, … , element R + (n-1)k 
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SYS example 
•  Telephone survey of members in an 

organization abut organization’s website use 
–  N = 500 members 
–  Have resources to do n = 75 calls 
–  N / n  = 500/75 = 6.67 
–  k = 7  
–  Random number table entry:  52994 

•  Rule:  if pick 1, 2, …, 7, assign as R; otherwise discard # 
–  Select R = 5 
–  Take element 5, then element 5+7 =12, then 

element 12+7 =19, 26, 33, 40, 47, … 
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SYS – 2  
•  Arrange population in rows of length  

k = 7 

R 1 2 3 4 5 6 7 i 

1 2 3 4 5 6 7 1 

8 9 10 11 12 13 14 2 

15 16 17 18 19 20 21 3 

22 23 24 25 26 27 28 4 

… … 

491 492 493 494 495 496 497 71 

498 499 500 72 
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Properties of systematic sampling – 1  
•  Number of possible SYS samples of size n is 

k 
•  Only 1 random act - selecting R 

–  After select 1st SU, all other SUs to be included in 
the sample are predetermined 

–  A SYS is a cluster with sample(i.e., cluster) size k  
•  Cluster = set of SUs separated by k units 

•  Unlike SRS, some sample sets of size n  
have no chance of being selected given a 
frame 
–  A SU belongs to 1 and only 1 sample 
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Properties of systematic sampling – 2 
•  Because only the starting SU of a SYS 

sample is randomized, a direct estimate of 
the variance of the sampling distribution can 
not be estimated 
–  Under SRS, variance of the sampling distribution 

was a function of the population variance, S2  
–  Have no such relationship for SYS 
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Estimation for SYS  
•  Use SRS formulas to estimate population 

parameters and variance of estimator 

 1
1
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Properties of systematic sampling – 3 
•  Properties of SRS estimators depends on 

frame ordering    
–  SRS estimators for population parameters usually 

have little or no bias under SYS 
–  Precision of SRS estimators under SYS depends 

on  ordering of sample frame 
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Order of sampling frame 
•  Random order 

–  SYS acts very much like SRS 
–  SRS variance formula is good approximation  

•  Ordered in relation to  y 
–  Improves representativeness of sample 
–  SRS formula overestimates sampling variance 

(estimate is more precise than indicated by SE)  
•  Periodicity in y  =  sampling interval k 

–  Poor quality estimates 
–  SRS formula underestimates sampling variance 

(overstate precision of estimate) 
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Example – 3  
•  Suppose X  [age of member] is correlated with Y  

[use of org website] 
•  Sort list by X before selecting sample  

k 1 2 3 4 5 6 7 X i 

1 2 3 4 5 6 7 young 1 

8 9 10 11 12 13 14 2 

15 16 17 18 19 20 21 3 

22 23 24 25 26 27 28 4 

… mid … 

491 492 493 494 495 496 497 71 

498 499 500 old 72 
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Practicalities   
•  Another building block (like SRS) used in 

combination with other designs 
•  SYS is more likely to be used than SRS if 

there is no stratification or clustering 
•  Useful when a full frame cannot be 

enumerated at beginning of study 
–  Exit polls for elections 
–  Entrance polls for parks 
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Practicalities – 2  
•  Best if you can sort the sampling frame by an 

auxiliary variable X  that is related to Y  
–  Improve representativeness of sample (relative to 

SRS) 
–  Improve precision of estimates 
–  Essentially offers implicit form of stratification 



Last slide 

•  Read Sections 5.3-5.5 
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