SOCORRO-CLAVERON-VELARDE (SCV) FISH EGGS ARTIFICIAL INCUBATOR FOR INTENSIVE TILAPIA HATCHERY SYSTEM

DENNIS V. DEL SOCORRO
ARNALDO ROMEO A. CLAVERON
ARNOLD V. VELARDE

Bureau of Fisheries and Aquatic Resources 5
Regional Freshwater Fisheries Center
Fabrica, Bula, Camarines Sur
Republic of the Philippines
Why Introduce the SCV for intensive tilapia hatchery system

- There is an undeniable problems caused by direct breeding method in the pond like poor quality fingerling produced, irregular size fingerlings, cannibalism, etc.

- A corrective measure is important to address the above problems towards a better alternative in incubation system

- The SCV-AI is one alternative in fish egg incubation system
THE RFFC

THE BICOL REGION
Regional Freshwater Fisheries Center

Administrative and Training Building of RFFC
HISTORY Early Artificial Incubator Designs

Hatching Tray, 30cm x 50cm
HI STORY Early Artificial Incubator Designs

Concrete-Tiled Hatching Trough,
5.0m x 1.0 x 0.2m
COMPONENTS

A. Conditioning Tanks, 10 units

8m x 2.5m x 1.5m/unit
B. Breeding Tanks, 12 units

5m x 4m x 1.25m/unit
C. SCV Artificial Fish Eggs Incubator
D. 20-unit Hatching Trough and 4-unit Fry Trough
E. Concrete Treatment Tanks, 9 Units

- 0.4 m³ capacity
- Flow-through sprinkling water as aerator and temperature regulator
F. Elevated Water Tank, 900L capacity

- Tank
- Water filter system
- Electric motor, ¾ hp
- Aeration component of pump is aerated as it is squirted going to the tank
HOW IT WORKS

Egg Collection

Ready to Spawn

Egg Collection on the 10th day
HOW IT WORKS

Egg Collection

- Releasing of eggs in a basin of water
- Forcibly opening the mouth of female breeder to release the fry/sac fry/eggs
HOW IT WORKS

Incubation

Egg Stocking
HOW IT WORKS

Stocking

Stocking in Hatching Trough according to stage of development

- Eyed eggs/ Sac fry
- Eyed egg
- Sac fry
HOW IT WORKS

Monitoring

Siphoning out

Rotten eggs
Fry spontaneously go with the outgoing water and are released down the Fry Trough via the overflow pipe.
Table 1. Cost and Return Analysis.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>UNIT PRICE</th>
<th>SALES (pcs.)</th>
<th>SALES PER RETURN (per run, P)</th>
<th>MONTHLY (3 run/mo.)</th>
<th>ANNUAL (9mos.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales</td>
<td>P</td>
<td>0.05</td>
<td>608,000</td>
<td>30,400.00</td>
<td>91,200.00</td>
</tr>
<tr>
<td>Variable Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>409.00</td>
<td>1,227.00</td>
<td>11.04</td>
</tr>
<tr>
<td>Electricity</td>
<td></td>
<td></td>
<td>2,866.00</td>
<td>8,598.00</td>
<td>77,382.00</td>
</tr>
<tr>
<td>Salary</td>
<td></td>
<td></td>
<td></td>
<td>6,000.00</td>
<td>72,000.00</td>
</tr>
<tr>
<td>Supplies and Materials</td>
<td></td>
<td></td>
<td>6,430.00</td>
<td>19,350.00</td>
<td>174,150.00</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td>972.50</td>
<td>3,522.55</td>
<td>42,270.00</td>
</tr>
<tr>
<td>Depreciation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163.10</td>
</tr>
<tr>
<td>Total cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10,697.50</td>
<td>38,860.65</td>
<td>378,802.20</td>
</tr>
<tr>
<td>Net Profit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19,702.50</td>
<td>87,339.35</td>
<td>441,997.80</td>
</tr>
<tr>
<td>Income Tax (25%/NP)</td>
<td></td>
<td></td>
<td>4,925.63</td>
<td>21,834.84</td>
<td>110,499.45</td>
</tr>
<tr>
<td>Net Income after tax</td>
<td></td>
<td></td>
<td>14,777.00</td>
<td>65,504.50</td>
<td>331,498.35</td>
</tr>
<tr>
<td>ROI (Net income/proj cost)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.38</td>
<td>1.69</td>
<td>0.87</td>
</tr>
</tbody>
</table>
THANK YOU VERY MUCH