An overview of lipid nutrition with emphasis on alternative lipid sources in tilapia feeds

Wing-Keong Ng & Cheong-Yew Chong

Fish Nutrition Laboratory
School of Biological Sciences
Universiti Sains Malaysia
Penang, Malaysia
Tilapia aquaculture is one of the fastest growing industry in the world.

With increasing intensification of culture systems, complete formulated feeds are required.
Feed Cost versus Tilapia Prices

The critical need to reduce feed costs to match low ex-farm prices of tilapia:

- Korea: 45%
- Malaysia: 65%
- Indonesia: 82%
- Thailand: 84%

The escalating cost of imported feed ingredients such as fish meal, soybean meal, wheat flour, fish oil, etc.

Source: International Aquafeed, 2000
Tilapia Feeds

- Protein sources – fish meal, vegetable proteins.
- Carbohydrates – wheat flour, corn flour, etc.
- Lipids – fish oil, vegetable oils.
- Vitamins and minerals.
- Binder and other additives.

Feed formulation depends mainly on fish size
Least-cost formulation for tilapia feeds

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Limit</th>
<th>Prestarter</th>
<th>Starter</th>
<th>Grower</th>
<th>Finisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>Min</td>
<td>40</td>
<td>30</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Lipid</td>
<td>Min</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Lysine</td>
<td>Min</td>
<td>2.04</td>
<td>1.53</td>
<td>1.28</td>
<td>1.02</td>
</tr>
<tr>
<td>Total P</td>
<td>Max</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Fiber</td>
<td>Max</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Fishmeal</td>
<td>Min</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

Source: Chawalit et al. 2003 (CP group)
Lipids

- source of energy
- source of essential fatty acids
- absorption of fat-soluble vitamins
- cellular & membrane structures
- precursors of hormones
- imparts flavor to diets
- affects diet texture
Lipid levels in tilapia feeds

Hybrid tilapia (O. niloticus x O. aureus)

Corn starch vs. corn oil/ CLO/ lard (1:1:1)
Chou & Shiau, 1996
Lipid levels in tilapia feeds

Tilapia zillii (El-Sayed & Garling, 1988).

- Dextrin vs. CLO-SBO mix (2, 5, 10, 15% lipid)
- No significant growth increase from 5 -15% lipid

Hybrid tilapia (*O. mossambicus x O.aureus*) (Fitzsimmons et al., 1997)

- 3, 6, 8% dietary lipids fed for about 3 months
- No significant difference in growth and FCR

Commercial tilapia diets ≤ 5% lipid
Essential Fatty Acids

Contradictory results as to the requirement of tilapia for \(n-3 \) and \(n-6 \) PUFA

- require only \(n-6 \) PUFA
- require both \(n-3 \) and \(n-6 \) PUFA
- > 1\% \(18:3n-3 \), DHA or EPA depress growth

0.5 to 1\% \(n-3 \) and \(n-6 \) PUFA until further research
Status of fish oil use in aquafeeds

- Aquaculture consumes 70% of the total global supply of marine fish oil
- Forecasted to use 97% of fish oil supplies by the year 2010
- Cost of fish oils continue to increase due to:
 - stagnation in marine capture fisheries
 - human dietary fish oil supplements
 - animal livestock industry
Aquaculture production versus Fish oil production

Year

Metric Tons (x 1000)

- Aquaculture production on aquafeeds
- Global fish oil production
World production of fish oil, rapeseed oil, palm oil and soybean oil
World Palm Oil Producers

- Indonesia: 30%
- Malaysia: 51%
- Nigeria: 3%
- Colombia: 2%
- Equador: 1%
- Others: 10%

Source: Oil World
Palm Kernel Oil

Crude Palm Oil

Palm Kernels

Palm Kernel Meal

Palm Fatty Acid Distillates

RBD Palm Olein

Bleaching

Deodorization

Distillation
Composition of Semipurified Diets

- Casein: 32.0%
- Lipid source: 10.0%
- Gelatin: 6.0%
- Cellulose: 14.8%
- Dextrin: 27.8%
- CMC: 1.5%
- Mineral mix: 5.0%
- Vitamin mix: 3.0%

35% protein and 14.6 kJ/g diet
Dietary Lipid Source Tested:

10% Cod liver oil (CLO)
10% Sunflower oil (SFO)
10% RBD palm olein (RBDPO)
10% Crude palm oil (CPO)
10% Crude palm kernel oil (CPKO)
5% CLO + 5% Palm fatty acid distillate (PFAD)
Fatty Acid Composition

Cod liver oil (CLO)
Sunflower Oil (SFO)

Crude Palm Oil (CPO)
Refined Palm Olein (RBDPO)
Crude Palm Kernel Oil (CPKO)

Palm Fatty Acid Distillate (PFAD)
Fatty acid composition of experimental diets

Type of fatty acids:
- n-6 PUFA
- n-3 PUFA
- Monoenes
- Saturates
Muscle palmitic acid (16:0) content of hybrid tilapia fed various dietary lipid and palm oil oil source
Muscle linoleic (18:2n-6) content of hybrid tilapia fed various dietary lipid and palm oil source
Muscle total n-3 PUFA content of hybrid tilapia fed various dietary lipid and palm oil source

![Bar chart showing muscle total n-3 PUFA content of hybrid tilapia fed various dietary lipid and palm oil source. The chart compares different lipid sources and their effect on muscle n-3 PUFA content. Notations indicate statistical significance with different letters representing different groups.]
Muscle fatty acid composition of red hybrid tilapia fed various dietary lipids

Type of fatty acids:
- n-6 PUFA
- n-3 PUFA
- Monoenes
- Saturates
Conclusion

Feeding diets containing palm oil have NO negative effects on:

• growth and feed utilization efficiency
• fillet yield and other body/organ indices
• fillet and body proximate composition
• blood indices such as hematocrits
Positive aspects of palm oil use in tilapia feeds:

- Lower cost and sustainable production of palm oil.
- High oxidative stability thereby minimizing feed rancidity.
- Does not significantly increase lipid content in tilapia fillets.
- Does not markedly increase the saturated fatty acids in tilapia fillets.
Positive aspects of palm oil use in tilapia feeds:

- Limits the deposition of less desirable fatty acids such as linoleic acid (18:2n-6)!
- human health concerns.
- fish health concerns.
- Lower PUFA content in fish fillet minimizes lipid peroxidation of tissue.
- Possible beneficial effects of natural antioxidants in crude palm oil.
Negative aspect of palm oil use in tilapia feeds:

- The deposition of desirable fatty acids such as EPA and DHA is decreased.
Fish Consumption, Fish Oil, Omega-3 Fatty Acids and Human Health

• There are 2 series of essential fatty acids that cannot be synthesized by animals or humans and must be supplied in the diet.
 • n-6 series derived from linoleic acid (18:2n-6) and n-3 series from linolenic acid (18:3n-3).
 • Two derivatives of linolenic acid are physiologically important compounds for human health:
 • EPA = eicosapentaenoic acid (20:5n-3)
 • DHA = docosahexaenoic acid (22:6n-3)
 • EPA and DHA are abundant in fish oils.
Positive effects of fish and fish oils on cardiovascular diseases

• Death rates from ischemic heart disease (% of all deaths) in the United States, Denmark and Greenland are 40.4, 34.7 and 5.3, respectively (Dyerberg, 1982).

• The American Heart Association strongly endorses the use of omega-3 for cardiovascular disease prevention (AHA, 2002).

• Several countries including the World Health Organization have made formal population-based dietary recommendations:
 • 0.3-0.5 g/day of EPA + DHA
 • 0.8-1.1 g/day of linolenic acid
 • two fatty fish meals per week.
Beneficial Effects of EPA and DHA

- Cardiovascular diseases
- Inflammatory diseases
- Arthritis
- Multiple sclerosis
- Cancer
- Skin diseases
- Asthma
- Normal brain functions
- Strokes
- Nephritis
- Lupus erythematosis
- Preterm birth
- Diabetes mellitus
- Improves learning ability
- Mood and behavior
- Healthy immune system

Data from various scientific sources
Tilapia fillet fatty acid composition after feeding diets with various oils for 5 months

Type of fatty acids:
- n-6 PUFA
- n-3 PUFA
- Monoenes
- Saturates
Total n-3 fatty acids in tilapia fillet after reverting back to a fish oil-based diet for 3 months.
Total n-6 fatty acids in tilapia fillet after reverting back to a fish oil-based diet for 3 months
Conclusions

• The total omega-3 fatty acids in tilapia fillet of fish fed palm oil-based diets may be markedly increased by:
 • formulation strategies – blending with fish oil or linseed oil.
 • reverting back to a fish oil-based diet just before harvest to manipulate the fatty acid composition.
• Palm oil is a better fish oil substitute compared to soybean oil as less undesirable omega-6 fatty acids are deposited in fish fillets.
Sensory evaluation of tilapia fillets fed various dietary lipids

Based on 10 trained sensory panelists from SeaPack Food Ltd, a major seafood processing factory in Malaysia.
Sensory evaluation of tilapia fillets fed various dietary lipids and after 6 months frozen storage

Based on 6 trained sensory panelists from Fisheries Research Institute, Malaysia.
Possible beneficial effects of natural antioxidants such as vitamin E in crude palm oil when deposited in tilapia fillets.
<table>
<thead>
<tr>
<th></th>
<th>Vit. E</th>
<th>CLO</th>
<th>SFO</th>
<th>CPKO</th>
<th>CPO</th>
<th>PFAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-T</td>
<td>96%</td>
<td>88%</td>
<td>7%</td>
<td>18%</td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td>β-T</td>
<td>-</td>
<td>3%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>γ-T</td>
<td>4%</td>
<td>8%</td>
<td>-</td>
<td>2%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>δ-T</td>
<td>-</td>
<td>1%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>α-T3</td>
<td>-</td>
<td>-</td>
<td>48%</td>
<td>24%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>β-T3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>γ-T3</td>
<td>-</td>
<td>-</td>
<td>45%</td>
<td>46%</td>
<td>42%</td>
<td></td>
</tr>
<tr>
<td>δ-T3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10%</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>235</td>
<td>582</td>
<td>43</td>
<td>983</td>
<td>4054</td>
<td></td>
</tr>
</tbody>
</table>

mg/kg
Total tocopherols and tocotrienols in experimental diets

- TAC-0
- TAC-25
- TAC-50
- TAC-100
- CPO-E
- PFAD
- CPO

Dietary vitamin E sources:
- Delta-T3
- Gamma-T3
- Alpha-T3
- Alpha-T
- Beta-T
- Gamma-T

mg vitamin E / kg diet:
- 0
- 20
- 40
- 60
- 80
- 100
- 120
- 140
- 160

Dietary vitamin E sources:
- TAC-0: 4 mg
- TAC-25: 30 mg
- TAC-50: 56 mg
- TAC-100: 105 mg
- CPO-E: 123 mg
- PFAD: 144 mg
- CPO: 112 mg
Vitamin E composition in experimental diets

Dietary vitamin E sources

- TAC-0
- TAC-25
- TAC-50
- TAC-100
- CPO-E
- PFAD
- CPO

Vitamin E sources:
- delta-T3
- gamma-T3
- alpha-T3
- alpha-T
- gamma-T
- beta-T
- alpha-T
Tocopherol and tocotrienol concentrations in the muscle of tilapia after 8 weeks

- alpha-T
- beta-T
- gamma-T
- delta-T

Dietary vitamin E source:
- TAC-0
- TAC-25
- TAC-50
- TAC-100
- CPO-E
- PFAD
- CPO

ug vitamin E / g tissue

0.0
1.8
4.6
7.1
9.7
6.2
8.4
6.7

delta-T3
gamma-T3
alpha-T3
beta-T
alpha-T
TBARS in muscle of tilapia fed various dietary vitamin E source

<table>
<thead>
<tr>
<th>Dietary vitamin E source</th>
<th>Total PUFA in muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAC-0</td>
<td>Diets 1-5 = 9.1 to 11.3 %</td>
</tr>
<tr>
<td>TAC-25</td>
<td>Diet 6 = 12.6 %</td>
</tr>
<tr>
<td>TAC-50</td>
<td>Diet 7 = 17.1 %</td>
</tr>
<tr>
<td>TAC-100</td>
<td></td>
</tr>
<tr>
<td>CPO-E</td>
<td></td>
</tr>
<tr>
<td>3% PFAD</td>
<td></td>
</tr>
<tr>
<td>10% CPO</td>
<td></td>
</tr>
</tbody>
</table>

nmol MDA/g tissue
Accumulation of vitamin E in fillet of tilapia fed increasing levels of tocotrienol-rich fraction from palm oil for 9 weeks
TBARS in muscle of tilapia fed increasing levels of a tocotrienol rich fraction from palm oil
Conclusion

✓ Tissue concentrations of tocopherols and tocotrienols increased in response to increasing dietary concentrations.

✓ Antioxidant potency of various vitamin E sources for hybrid tilapia:
 palm vitamin E > α-tocopherol acetate.

✓ Biodiscrimination mechanism (α-T transfer protein) probably exist in tilapia liver with greater affinity for α-T > α-T3 > γ-T3.
Conclusion

✓ Palm tocopherols and tocotrienols significantly improve oxidative stability of tilapia fillets that will translate to longer shelf life and freshness for seafood products.
Conclusion

✓ Deposition of tocotrienols adds value to tilapia products especially if they are eaten raw as sashimi or sushi.
Human health benefits of palm tocotrienols:

- Higher anti-oxidant potency.
- Hypocholesterolaemic effects.
- Anti-cancer properties.
- Prevention of cardiovascular diseases.
Nutritionally enhanced chicken eggs
It is not inconceivable that one day in the near future, tilapia fillets will also be labeled just like poultry eggs to advertise nutritionally enhanced seafood products at a premium price for the health-conscious consumer.
Bon Appétit!

Recipes for Malaysian White / Red Tilapia
Thank You
An overview of lipid nutrition with emphasis on alternative lipid sources in tilapia feeds

Wing-Keong Ng & Cheong-Yew Chong

Fish Nutrition Laboratory
School of Biological Sciences
Universiti Sains Malaysia
Penang, Malaysia