Evapotranspiration

ASM/ SWES 404/504
Crop Water Requirements

- Rate of water use depends on kind of crop, maturity, and atmospheric conditions.
- Seasonal water requirement is needed to:
 - match crops with available water supply
 - variation within season needed for irrigation scheduling
- What determines whether irrigation is economically feasible in humid and some subhumid regions?
Evapotranspiration

- **Definition**
 - also known as consumptive water use
 - expressed as inches/day, inches/month, inches/season

- **Factors affecting evaporation**

- **Factors affecting transpiration**
Evapotranspiration

Methods for determining ET

- tank and lysimeter experiments
- experimental field plots
- soil-water studies
- analysis of climatological data
- integration methods
- inflow-outflow method
Evapotranspiration

Methods for predicting ET
- Mass transfer
- Energy balance
 - Penman
 - Jensen-Haise
- Empirical
 - Blaney-Criddle

ETc = (Kc)(ETo)
Blaney-Criddle Method

- One the oldest methods of estimating ET
 - a bit simplistic
 - mean monthly temperature
 - monthly percent of annual daylight hours
 - crop coefficient
Blaney-Criddle Method

Equations

- monthly: \(u = \frac{ktp}{100} = kf \)

where:

- \(u \) = monthly ET, inches
- \(k \) = monthly ET coefficient
- \(t \) = mean monthly temp, °F
- \(p \) = monthly % annual daytime hours
- \(f = \frac{(tp)}{100} = \text{monthly ET factor} \)
Blaney-Criddle Example

Compute the evapotranspiration for corn at Yuma (valley) for the month of May using the Blaney-Criddle method. Assume a k of 0.7.
Blaney-Criddle Method

Equations

seasonal: \[U = KF = K \sum f = \sum kf \]

where

\(U \) = seasonal water use, inches

\(K \) = seasonal ET coefficient

\(F \) = sum of monthly ET factors \(f \) for the period

\(f = (tp)/100 \) = monthly ET factor

\(t \) = mean monthly temperature, °F

\(p \) = monthly % of annual daytime hours
Blaney-Criddle Example

Compute the evapotranspiration for corn at Yuma (valley) for the growing season using the Blaney-Criddle method.
Blaney-Criddle Method

- Advantages and disadvantages?
 - advantages
 - disadvantages
Penman Method

- Energy Balance and Mass Transfer Approach

\[R_n = E + A + S + C \]

- Estimates ET for well-watered short grass, i.e., estimates ET₀
Penman Method

- Equations
 - λET_o
 - ET_o
 - ET_c
- Actual ET for crop:

$$ET_c = (K_c)ET_o$$
Penman Method

Advantages and Disadvantages?

- Advantages

- Disadvantages
Jensen-Haise Method

- Energy Balance (solar radiation) Approach
- Simpler than Penman
- Based on extensive field data
- Estimates λET_r

$$\lambda ET_r = C_t (T - T_x) R_s$$

λET_r = alfalfa-based reference ET
R_s = solar radiation = $(0.35 + 0.61 \frac{n}{N}) R_{so}$
T = mean air temperature for calculation period
C_t = calc. value based on elevation and vapor pressures
Jensen-Haise Method

- Crop ET estimated from K_c for alfalfa-based reference ET
 - $ET_c = (K_c)ET_o$
 - grass-based $K_c \neq$ alfalfa-based K_c

- Advantages and disadvantages
 - advantages
 - disadvantages
Pan Evaporation Method

\[\text{ET}_o = (K_p)(E_{\text{pan}}) \]

- Pan coefficient, \(K_p \)
 - determined by avg daily wind speed and mean relative humidity

Advantages and disadvantages

- advantages: real-time evaporation rates, on-site data, relatively easy
- disadvantages: data influenced by pan placement and type, climate; water in pan stores and releases water differently than crop
Table: Case A and Case B

<table>
<thead>
<tr>
<th>Class A Pan</th>
<th>Case A</th>
<th>Case B</th>
<th>Case B U</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- pan surrounded by short green crop -</td>
<td>- pan surrounded by dry-fallow land -</td>
<td></td>
</tr>
<tr>
<td>Mean relative humidity (%)</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td><40</td>
<td>40-70</td>
<td>>70</td>
<td><40</td>
</tr>
<tr>
<td>Average daily wind run (mi/d)</td>
<td>Upwind distance of green crop (ft)</td>
<td>Upwind distance of dry fallow (ft)</td>
<td></td>
</tr>
<tr>
<td>Light 120</td>
<td>0</td>
<td>0.55</td>
<td>0.65</td>
</tr>
<tr>
<td>120</td>
<td>30</td>
<td>0.65</td>
<td>0.75</td>
</tr>
<tr>
<td>300</td>
<td>0.7</td>
<td>0.8</td>
<td>0.85</td>
</tr>
<tr>
<td>3,000</td>
<td>0.75</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Moderate 120-240</td>
<td>0</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>120-240</td>
<td>30</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>300</td>
<td>0.65</td>
<td>0.75</td>
<td>0.8</td>
</tr>
<tr>
<td>3,000</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Reference evapotranspiration and crop coefficient

- Reference evapotranspiration, ETo
 - obtained directly
 - computed through empirical methods
 - Internet (http://Ag.Arizona.Edu/azmet/etrain.htm)

- Reference ET is converted to crop ET with a seasonal crop coefficient.
 - crop coefficient dependent on stage of growth and location

- Reliability
How is ET data used?

- Reference ET converted to crop ET to estimate how much water is needed for the crop during a time period.
- Knowing the irrigation efficiency, determine the inches of water to apply.

Irrigation Water Requirement, inches = \(\frac{ET_c}{\text{Irrigation Efficiency}} \)