Photosynthetic Water Use Efficiency

Fundamental plant problem: **Stomata**: pathway for diffusion of CO$_2$ into leaves is the same as the pathway for diffusion of H$_2$O out.

A plant’s success in dealing with water loss and CO$_2$ uptake is measured as its **Photosynthetic Water Use Efficiency (WUE)**.

Photosynthetic Water Use Efficiency

- WUE = amount CO$_2$ fixed by photosynthesis per amount H$_2$O lost by transpiration.

 \[(WUE = \frac{\text{CO}_2 \text{ fixed}}{\text{H}_2\text{O transpired}})\]

Is it better to have a high or low WUE?

Two major innovations that have increased WUE involve the evolution of **new photosynthetic pathways**.

To understand these, first review the ancestral **C3 photosynthetic pathway**. (Chapter 8)

Photosynthesis

2 major components:

1. **Light reactions** – where light is ‘harvested’
2. **Dark reactions** – where CO$_2$ is fixed into sugars
Photosynthesis has two major components:

1. **the light-harvesting reactions** (the "light reactions"):
 - Light energy is absorbed by **chlorophyll** and accessory pigments.

2. **the CO2-fixation reactions** (also known as the "dark reactions"):
 - Occur in the **stroma** ("soupy" matrix outside thylakoids).
 - CO2 is "fixed" (or chemically bound).

C3 Photosynthesis

- **The primary reaction by which CO2 is fixed** in most plants is:

 \[\text{ribose bisphosphate} + \text{CO}_2 \rightarrow 2 \text{3-phosphoglycerate} \]

 \[(C5) \rightarrow (C3)\]

- This is called **C3 photosynthesis** because the primary fixation product is 3-phosphoglycerate (C3).

C3 Photosynthesis

- **Enzyme** ribulose bisphosphate carboxylase (or RuBP carboxylase) also known as **Rubisco**.

- **Rubisco** often accounts for more than 50% of the soluble protein in leaves, and thus may be the most abundant protein in nature.
One problem with C3 photosynthesis is that **Rubisco can add O₂ to RuBP** instead of CO₂. (it can catalyze the reaction in reverse)

Photorespiration actually releases rather than fixes CO₂, thus *reducing* carbon fixation.

Relative concentrations of CO₂ and O₂ determines balance between C-fixation and photorespiration.

When it's hot & dry - stomata close

Effects on CO₂ and O₂ rel. concentrations?

Favoring?

Photosynthesis (Water Use Efficiency)

Two major innovations that have increased WUE involve the evolution of new photosynthetic pathways:

1. C4 Photosynthesis
2. CAM Photosynthesis

Plan A: C4 photosynthesis

- In some plants, the primary fixation product of photosynthesis is oxaloacetate (which has 4 carbons).

- These are **"C4 plants"**, CO₂ is fixed when:

 \[
 \text{phosphoenol pyruvate + CO}_2 \rightarrow \text{oxaloacetate (C4)}
 \]

- Catalyzed by the enzyme phosphoenol pyruvate carboxylase (or **PEP carboxylase**).

C4 photosynthesis – increases WUE

PEP carboxylase has **two key properties**:

- It doesn't do photorespiration.
- It can fix CO₂ at very low concentrations.

E.g. of C4 plants: many tropical grasses including corn, sugar cane, sorghum, and millet.
An additional feature of C4 photosynthesis: separation parts of dark reactions in space

An additional feature of C4 photosynthesis –
- C4 photosynthesis, uses both C4 and C3 pathways.
- In C4 plants there is a spatial separation – Rubisco only has access to CO₂ in bundle sheath cells

C4 photosynthesis – increases WUE
- C4 plants occur in hot, dry environments, where photosynthetic water-use efficiency is at a premium.
- C4 evolved about 15mya when CO₂ levels dropped.

C4 photosynthesis – increases WUE
- Because of the 2 key properties of PEP carboxylase:
 C4 plants can maintain high rates of photosynthesis with less stomatal opening than C3 plants.
- Water-use efficiency?
 C4 plants >> C3 plants (3x higher)

RuBisCO
(Ribulose-1,5-bisphosphate carboxylase/oxygenase)

What is the ‘problem’ most plants experience in hot dry conditions?
- ribulose bisphosphate + CO₂ → Carbon Fixation
- ribulose bisphosphate + O₂ → Photorespiration
C3 vs C4 photosynthetic plants

What enzyme is used to fix CO2 in C3? In C4?

\[
\text{ribulose bisphosphate} + \text{CO}_2 \rightarrow 2 \text{ 3-phosphoglycerate} \quad \text{(C3)}
\]

\[
\text{phosphoenol pyruvate} + \text{CO}_2 \rightarrow \text{oxaloacetate} \quad \text{(C4)}
\]

Difference between RUBISO and PEP carboxylase?

Plan B: Crassulacean Acid Metabolism (CAM)

- CAM photosynthesis, like C4 photosynthesis, uses both C4 and C3 pathways.
- CAM plants there is a temporal separation

Crassulacean Acid Metabolism

- In all CAM species the stomata open during the night and close during the day.

At Night: CO2 is fixed by PEP carboxylase into oxaloacetate (same as C3 or C4 plants?).

- stored in large vacuoles.

During the day: (stomata are closed)

- The released CO2 is fixed by Rubisco via a pathway similar to that in C3 plants.

Succulents (water storing plants), e.g., cacti, pineapple, Spanish moss, agaves.

Water-use efficiency?

- CAM >> C4 >> C3
- Yet closing stomata during the day severely reduces their ability to take in CO2.
- Thus they are slow growers.
Summary

• **Fundamental problem** especially in hot dry places:
 the pathway for diffusion of CO₂ in is the same as
 the pathway for diffusion of H₂O out

• C₄ and CAM Photosynthesis: both use the more
 efficient C₄ carbon fixation. Enzyme is?

Difference between the 2 adaptations?

- **C₄** –
 - safe place (bundle sheaths).
- **CAM** –
 - safe time (when stomata are closed).

Translocation of Substances in the Phloem

• Photosynthesis in the chloroplasts produces
 sugars

• Send it from the leaf through the **phloem** to
 where its needed:
 Growing tips of shoots and roots, fruits, seeds,
 and storage parenchyma in stems or roots.

Translocation of Substances in the Phloem

• Sucrose goes from **source** to **sink**.

• **Source**: sites of photosynthesis or storage
 sites.

• **Sinks**: are any plant parts unable meet
 their own nutritional needs
 (storage sites can be sinks when importing
 and sources when exporting)

The pressure-flow model explains phloem
 transport

Sucrose pumped into sieve tubes at the source.
This creates **osmotic pressure** Ψ_s pulls in
water - creating **turgor**.

Turgor pressure Ψ_p builds up

Water moves because of
build up of Ψ_p –
pushes water thru
phloem

The pressure-flow model explains phloem
transport

Sucrose: unloaded at the
sink and facilitates
water movement out
of the sieve tube.

Active transport is
involved with loading
and unloading sieve
tubes.

Transport in Xylem vs. Phloem?

1. Water and minerals are **pulled** through the
 xylem without expending energy.

2. Energy is expended to **push** substances
 through the phloem.
Plant Nutrition

- Most plants are autotrophs: they make energy from compounds using solar power, CO2 and water.
- However, they do need a number other nutrients:
 - Nitrogen (N) for proteins and DNA
 - Phosphorus (P) for ATP
 - Potassium (K) for stomatal opening.
 - Other essential elements

Plant Nutrition

- Nutrients are derived from rock, except for N.
- Plants get most of these (including N) from the local soil.
- Roots "forage" for water and nutrients

Plants limited by nitrogen.
- There is almost always a growth response to added N.
- N is in chlorophyll and Rubisco.
- (There are charts of nutrient deficiencies that are handy to have if you like growing plants (e.g., Table 37.2 in your text)).

Plants and Soils

Particle size: sand, silt, clay; small, smaller, smallest.
- Sandy: plenty of air space, but low in water and nutrients.
- Clayey: plenty of nutrients and water, but low in air (roots need O2).
- Loamy (=mixture of sand, silt, and clay): has good levels of air, water and nutrients.

Clay is critical to plant nutrition
- Many nutrients are positively charged in soil: K+, Mg2+, Ca2+
- Clay particles have negative charges on the outside and attract and hold these + nutrients.
- Ion exchange: Plants release protons (H+) which trade places with the + nutrients, bringing them into solution which can be absorbed.

Negatively charged ions are more readily leached away: NO3-, SO4-, H2PO4-.
- Organic matter is a reservoir of N which slowly releases it during decomposition.
Fertilizer
Under intensive agriculture, plants need nutrient supplements. **Organic fertilizers** (like rotted manure) release nutrients more slowly.
- result in less runoff, which is damaging to waterways.
- Organic matter improves soil structure.

Fertilizer
Under intensive agriculture, plants need nutrient supplements. **Inorganic fertilizers** — instant fix, precisely formulated.
- Leaching and runoff damaging.
- takes much energy to manufacture (the biggest energy input into intensive agriculture).

Humus
Humus = Dark colored organic material
a product of decomposition - leaf litter, feces, and other stuff (like dead animals and fungi).
- Humus is rich in nutrients, especially N.

Humus
Humus = Dark colored organic material
a product of decomposition - leaf litter, feces, and other stuff (like dead animals and fungi).
- Humus is rich in nutrients, especially N.

Nitrogen Fixation
- 78% of the atmosphere is nitrogen (N₂)
- **Very stable** and unreactive → triple bond
- A few species of *bacteria* can break it with the enzyme *nitrogenase* and a lot of ATP.

Nitrogen Fixation
- 78% of the atmosphere is nitrogen (N₂)
- **Very stable** and unreactive → triple bond
- A few species of *bacteria* can break it with the enzyme *nitrogenase* and a lot of ATP.

Nitrogen is fixed by Bacteria
(and factories!)
- *Cyanobacteria* — mostly aquatic
- Most nitrogen fixation on land is done by bacteria that live symbiotically in plant roots.
- Some *lichens* have *symbiotic cyanobacteria*.

Nitrogen is fixed by Bacteria
(and factories!)
- *Cyanobacteria* — mostly aquatic
- Most nitrogen fixation on land is done by bacteria that live symbiotically in plant roots.
- Some *lichens* have *symbiotic cyanobacteria*.

Nitrogen is fixed by Bacteria
- *Rhizobium* (a bacteria) is the root symbiont of *legumes* (one of the largest flowering plant families):
 - Peas, soybeans, clover, mesquite, palo verde
Some Plants are Parasites or Predators

- Unhappy with the lifestyle we’ve been looking at, some plants “eat food”.
- This either replaces or supplements photosynthesis.

(1) Parasites form absorptive organs which invade a host plant and connect to its vascular tissue.
- They take water and nutrients and photosynthate.
- Some partial parasites only supplement their own photosynthesis.

Some Plants are Parasites or Predators

(2) Carnivorous plants, the stuff of science fiction.
- 450 species known.
- Capture and digest insects (not humans).
- Boggy regions have acidic soil which slows the breakdown of organic matter.
- Carnivorous plants supplement their nitrogen supply.