Lecture 13: Insect nerve system (NS)

Signal transducer, transmitter, processor (integrator)

Overview

- Structures (Anatomy)
 - Cells
 - Anatomy

- Functions
 - Signal transduction
 - Signal transmission

Cells in the nerve system

- 1.Nerve cells (=Neurons): Conducting cells that transduce, transmit or process nerve impulses.
- 2.Glial cells: Non-conducting supporting cells that surround neurons and help to protect neurons and maintain stable ionic environment

Neuron has projections

Neurons similar to other cells, but:

- 1. have specialized extensions called dendrites and axons. Dendrites bring information to the soma and axons take information away from the soma.
- 2. Neurons communicate with each other through specialized structures called synapses and chemicals (e.g. neurotransmitters).

Neuron-neuron junction: synapse

Postsynaptic neuron

Remember: electric synapse

Types of neuron: unipolar

one projection extending from the soma

Types of neuron: bipolar

Terminal arborization

- Two projections extending from the cell body
- Typical of sensory neuron

Types of neuron: multipolar

Many projections extending from the soma But only one axon

Types of neuron: two ways of classification

By the number of extensions

- unipolar neurons have one projection extending from the soma.
- Bipolar neurons have two projection extending from the soma
- Multipolar neurons
 have many projections
 extending from the
 soma. However, each
 has only one axon

By the direction of information that they send (function)

- Afferent (sensory) neurons --bipolar or multipolar cells have dendrites that are associated with sense organs. They carry information <u>TOWARD</u> the central nervous system (CNS).
- Efferent (motor) neurons -- unipolar cells that conduct signals <u>AWAY</u> from CNs and stimulate responses in muscles and glands.
- Interneuron (association neuron) -unipolar cells that form connections
 between afferent and efferent neurons
 and conduct signals <u>WITHIN</u> CNS.

Sensory neuron

Where are motor neurons and interneurons?

Inside ganglion

- Cell bodies cluster on outside ring
- Center region: axons and dendrites of interneurons and motor neurons AND axon arborizations of sensory neurons
- Center region = NEUROPIL

Inside ganglion: glial cells

Surround ganglion

- Neural lamella: mechanical support for NS, secreted by perineurium
- Perineurium=brain-blood barrier: a layer of glial cells that maintain stable ionic environment
- Nerve sheath= lamella + perineurium

Surround individual nerve (axon)

- Protect, insulate and repair neuron
- Pass nutrients to nerve and control ionic environment
- More glial cells than neurons

Glial cells: go with sensory neurons

Insect Nerve system: anatomy

- Central nerve system (CNS) most ganglia included: brain+ventral nerve cord
- Stomatogastric nerve system (SNS) Frontal ganalion

 hypocerebral ganglion + ventricular ganglion; innervate
 muscles of the mouth cavity, foregut, midgut; and
 regulate food uptake and food transport
- Peripheral Nerve system (PNS)- all sensory neurons; not bundled in ganglia; located in integument

PNS: all sensory neurons

- In epidermis
- Sensory neurons
- Outside ganglion

SNS: FG, HG and VG

FG: Frontal ganglion

HG: Hypocerebral ganglion

 VG: Ventricular ganglion or cluster of neurons

- FG: connect with tritocerebrum and HG, send axons to pharynx and esophagus. control of food passage through the gut and crop emptying
- HG: sends axons to CC and VG
- VG: associate with foregut and midgut

CNS: brain + ventral nerve cord

- Brain: a compound ganglion, major association center
- Ventral nerve cord: SG + TG + AG: local association center
- SG: a compound ganglion (mandible maxillae, and labium)

Ventral nerve cord: trend towards ganglia (fusing) condensing

More ventral ganglia in primitive species than in advanced ones More in larvae than in adult

Brain: proto-, deuto- and tritocerebrum

Brain: another perspective

Components of the insect brain.

Protocerebrum

Deuto- and tritocerebrum

- Antennal lobe: the centers that receive the antennal nerves
- Tritocerebrum: the origin of the labral nerves that run to the upper lip

Mushroom body: center for higher-order sensory integration and learning

- Receive information mainly from olfactory (antennal lobe).
 Hymenoptera also from optic lobe
- Olfactory learning and memory, place memory, associative memory, and roles in motor control

Roles of central complex

- control of locomotor activity, particularly flight and walking
- center for direction perception and spatial navigation
- coordinates L and R brain?

