Arizona Climate

Mike Crimmins Climate Science Extension Specialist Dept. of Soil, Water, & Env. Science & Arizona Cooperative Extension The University of Arizona

Presentation Overview

- The global climate system
- An overview of Arizona climate
- Why so much variability?
- Winter 2011/12
- Volunteer Opportunities

What is climate?

Climatology: analysis of long-term weather patterns over time or space

- The frequency of extreme events also important in climatic analyses (e.g. droughts & floods)
- Mean conditions AND variability

From: http://www.fsl.noaa.gov/visitors/education/climgraph/CG_Figure_10.gif.html

Global Energy Balance

CSAP

From http://www.bom.gov.au

Global Circulations: Flows of Mass & Energy

Atmosphere

Background on AZ Climate

Climate Science Applications Program - Arizona Cooperative Extension

Annual Average Arizona Temperatures

Annual Average Arizona Precipitation

CSAP

Arizona Climograph

Climate Science Applications Program - Arizona Cooperative Extension

CSAP

Seasonal Distribution of Precipitation

More winter precip in northern AZ
Stronger monsoon signal in southeast AZ (more summer precip)

(graphic from Sheppard, et al. 2000)

Annual Average Arizona Potential Evapotranspiration

http://southwest.library.arizona.edu/

CSA

Average Daily Observations: Coolidge-AZMET 0.5 Daily averages based on 1987-2007 period Annual Avg. Total Precip: 7.4 in. Annual Avg. Total ET: 77.6 in 0.45 90 0.4 80 ١Λ. 0.35 70 "W 0.3 60 W inches deg F 0.25 50 WW TryW 0.2 40 0.15 30 <u>∿</u>√√ $\mathrm{Im}_{\mathrm{Im}}$ 0.1 20 0.05 10 0 0 31 211 61 91 121 151 181 241 271 301 331 361 1 Day of Year

----- Ref ET (in) ----- Total Precip (in) ----- Avg Temp (F)

Example Water Balance: Walnut Gulch, Arizona

CSAF

Gila County – Annual Total Precipitation

Gila County – Summer Total Precipitation

Gila County – Winter Total Precipitation

Long-term View

http://www.climas.arizona.edu/research/paleoclimate/product.html

CSAP

Gila County – Avg. Annual Temperature

Changes in plant hardiness zones: 1990-2006

Loading maps... 0 %

Atmospheric Controls on Arizona Climate

Atmospheric Circulation and Arizona Climate

- Large-scale circulation patterns are an important determinant of local climate
- Arizona has a unique geographic position in northern hemisphere
- Circulation patterns are tied to global ocean sea surface temperatures
- Patterns can persist for years and even decades

Seasonality of Circulation Patterns

Global Circulations and Aridity

North American Monsoon

Climate Science Applications Program - Arizona Cooperative Extension

Monsoon

Monsoon start dates for Tucson

Average start July 3rd
Earliest start June 17 2000

•Latest start July 25 1987

June Mean Flow at 18,000 Feet

Monsoon season rainfall (June 15th to September 30th) •Average monsoon season rainfall 6.06" •Driest monsoon season 1.59" in 1924 •Wettest monsoon season 13.84" in 1964

CS

Upper Level Flow - May

Upper Level Flow - June

Upper Level Flow - July

thunderstorm activity)

PACIFIC OCEAN

Conceptual diagram of key circulation features of the North American Monsoon System GULF OF MEXICO

easterly wind

Viz (Marka

Mexico

Interannual Climate Variability

Climate Science Applications Program - Arizona Cooperative Extension

El Nino – Southern Oscillation

Dominant Circulation Pattern: La Nina Winter

Climate Prediction Center/NCEP/NWS

CSA

Dominant Circulation Pattern: El Nino Winter

Arizona ENSO Connection

Pacific Decadal Oscillation

Period	North Pacific	Southwest Winters	Pacific Decadal Oscillation (Nov-Mar)					
		TT IN NOTO	2					
1920s-1940s	Cold	Wetter						
1940s-1970s	Warm	Drier						
1970s-20??	Cold	Wetter						
20??-????	Warm	Drier?	1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000					

(from Pagano 1999)

CSA

NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS

A NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

» About NOAA » Contacts » Staff Directory

>> SEARCH

Weather.gov Forecast City, ST >>> GO >> Active Weather Alerts

» NOAA Organizations

» Working With NOAA

» NOAA In Your State

Related Links

Call (mp3)

>> U.S. Drought Monitor

Drought Portal

>> U.S. Winter Outlook

>> Hydrometeorological

Prediction Center

» Media & Constituents

» Emergency Information for NOAA Employees

>> Winter Outlook Conference

» National Integrated Drought

Information System - U.S.

U.S. dealt another La Niña winter but 'wild card' could trump it

Devastating drought in Southern Plains likely to continue

October 20, 2011

The Southern Plains should prepare for continued drier and warmer than average weather, while the Pacific Northwest is likely to be colder and wetter than average from December through February, according to the annual <u>Winter</u> <u>Outlook</u> released today by NOAA.

» Help

For the second winter in a row, La Niña will influence weather patterns across the country, but as usual, it's not the only climate factor at play. The 'wild card' is the lesser-known and less predictable Arctic Oscillation that could produce dramatic short-term swings in temperatures this winter. COOLER CO

U.S. Winter Outlook

High Resolution (Credit: NOAA)

NOAA expects La Niña, which returned in August,

to gradually strengthen and continue through the upcoming winter. It is associated with cooler than normal water temperatures in the tropical Pacific Ocean and influences weather throughout the world.

"The evolving La Niña will shape this winter," said Mike Halpert, deputy director of NOAA's Climate Prediction Center. "There is a wild card, though. The erratic Arctic Oscillation can generate strong shifts in the climate patterns that could overwhelm or amplify La Niña's typical impacts."

Media Contact

La Niña – Recent Conditions

Where are we headed?

IRI Probabilistic ENSO Forecast for NINO3.4 Region

2011

2012

Closing Points

- Elevation, latitude, and ocean sea-surface temperatures create a complex Arizona climate
- Different mechanisms create summer versus winter precipitation
- Lots of opportunity for variability (spatially and temporally)
- Climate change is real and a reason for concern in Arizona

RainLog: Volunteer Precipitation Monitoring Network for Arizona

 Network developed by **SAHRA** and Arizona **Cooperative Extension in** support of state drought monitoring needs Has over 1700 volunteers and is continuing to grow Complementary to existing observing networks Opportunity to collect and share precipitation data across ungauged rural areas

SAHRA EXTENSION

© 2007 Arizona Board of Regents, Developed by SAHRA v 1.3.4

My RainLog

- Encouraging volunteers to submit, store, and manage their own historical data
- Special functions and tools to create reports and graphics
- Historical data allows for calculations of averages and percentiles useful in drought monitoring
- Many detailed records submitted, ongoing solicitation for more historical data

rainla	a' ora							Log out Mike C	rimmins Learn more	
	9.9.9	home	data	add	data	handbook	my profile	partners		
daily	month grid	monthly	entries							
A Previous month Next month Next month Next month										
Monthly	Rain Data fo	or August, 2	006					! ju	mp to: V	
Enter your rain gauge data below. Red columns are required. Dates in the future are not presented.										
Gauge	Will	Check to	Total		Readin	g Time	Quality	Comments		
Read On	Report On	Save Check all	Precipita	tion	00-23:0	00-59				
08/01	07/31		0.0	•	07	00	Good 💌		0	
08/02	08/01		0.0	ŀ	07	00	Good 💌		0	
08/03	08/02		0.0	÷	07	00	Good 💌		0	
08/04	08/03		0.0	ŀ	07	: 00	Good 💌		0	
08/05	08/04		0.0	ŀ	07	: 00	Good 💌		0	
08/06	08/05		0.0	÷	07	: 00	Good 💌		0	
08/07	08/06		0.0	÷	07	: 00	Good 💌		0	
08/08	08/07		0.0	ł.	07	: 00	Good 💌		0	
08/09	08/08		0.0	÷	07	: 00	Good 💌		0	
08/10	08/09		0.0	ŀ	07	: 00	Good 💌		0	
08/11	08/10		0.0	÷	07	00	Good 💌		0	
08/12	08/11		0.0	÷	07	: 00	Good 💌		0	
08/13	08/12		0.0	•	07	: 00	Good 💌		0	
08/14	08/13		0.0	•	07	: 00	Good 💌		0	
08/15	08/14		0.0	•	07	: 00	Good 💌		0	
08/16	08/15		0.0	•	07	: 00	Good 💌		0	
08/17	08/16		0.0	•	07	00	Good 💌		0	

Climate Science Applications Program - Arizona Cooperative Extension

AZ DroughtWatch

Program

LSJN Lower San Juan River

http://azdroughtwatch.org

CSAP

Qualitative Impact Reports

□ 😅 Water Resources and Hydrology								
A1 Unusually low water levels in reservoirs, lakes, and ponds								
Please provide more information about this drought impact								
Provide details about the impact:	Upload an image:							
	E 0							
How is this impact different this month than last month? Falling 💌								
If applicable, provide a monetary cost of this impact (\$):								
A2 Unusually low flows in streams, rivers, and springs								
A3 Poor water quality due to low levels/low flows								
A4 Impacts on hydro-electric power generation								
A5 Need for supplemental water due to drought impacts on local surface water resources (e.g. hau								
Add an impact for this category not listed above:								
Agricultural Impacts (food crops, cash crops, and aquacul	ture)							
Livestock Production and Grazing Land Impacts								
[*] Societal and Community Impacts								
Tourism and Recreation								
Ecological Impacts								
Submit Survey								

AZ DroughtWatch

AZ DroughtWatch Provides: • An easy to use – universally available reporting system of drought impacts in AZ • Tools to catalogue, evaluate and report those impacts across over time.

AZ DroughtWatch Supports: • The Arizona Drought Preparedness Plan and Governor's Drought Task Force • Improves local-level vulnerability assessments and drought planning/mitigation.

Huc 6: Santa Cruz River Huc 8: Pantano Wash-Rillito River Huc 10: Cienega Creek

Individual Watershed Report

Observer Type: Resource Manager/Field Technician Observation Frequency: 1 day

Surface Water Impacts

Unusually low flows in streams, rivers, and springs

This report is based on measurement of Countys Cienega Creek Natural Preserve pre-drought years for this time of year, th observed. The amount of flow is higher to but lower at the other site.

Individual Watershed Report

Observer Type: Citizen Volunteer/Watershed Group Observation Frequency: 2-5 days

Tourism and Recreation

Public land/park closures to recreational users due to lack of increased wildfire danger

Abbreviation	Watershed Name	water	agriculture	livestock	society	tourism	ecology	Total number of impacts	Total number of surveys	Number of unique observers
UPCR	Upper Colorado River of Lake Powell Area	0	0	0	0	0	0	0	0	0
USJN	Upper San Juan River	0	0	0	0	0	0	0	0	0
LSJN	Lower San Juan River	0	0	0	0	0	0	0	0	0
LOCR-LEES	Lower Colorado River, Lees Ferry to Lake Mead	3	0	0	0	0	0	з	1	1
LICR	Little Colorado River	0	0	0	0	0	0	0	0	0
LOCR-MEAD	Lower Colorado River below Lake Mead (Local Drainage)	0	0	0	0	0	0	0	0	0
BILL	Bill Williams River	0	0	0	0	0	0	0	0	0
UGIL	Upper Gila River	0	0	0	0	0	0	0	0	0
MGIL	Middle Gila River (Local Drainage)	0	1	0	0	0	0	1	1	1
SPED	San Pedro River	5	0	0	0	0	1	6	4	4
SCRZ	Santa Cruz River	4	1	1	0	1	0	7	5	4
SALT	Salt River	0	0	0	0	0	1	1	1	1
VERD	Verde River	0	0	0	0	0	0	0	0	0
AGFR	Agua Fria River-Lower Gila River	0	0	0	0	0	0	0	0	0
LGIL	Lower Gila River below Painted Rock Dam	0	0	0	0	0	0	o	0	0
RSON	Rio Sonoyta	0	0	0	0	0	0	0	0	0
RASU	Rio Asuncion	0	0	0	0	0	0	0	0	0
RBAV	Rio Bavispe	0	0	0	0	0	0	0	1	1

Resources

- Climate Assessment for the Southwest (http://www.climas.arizona.edu/)
- National Weather Service
- (http://www.weather.gov)
- Climate Prediction Center (http://www.cpc.noaa.gov/)
- Western Regional Climate Center (http://wrcc.dri.edu/)
- National Drought Monitor (http://www.drought.unl.edu/dm/index.html)
- Climate Science Applications Program (http://cals.arizona.edu/climate)