Application of Animal Manure/Compost in an Irrigated Alfalfa Production System

Koli Ann Tanksley and Edward C. Martin

Agricultural & Biosystems Engineering
The University of Arizona
The Problem

- The recently enacted ruling (Unified National Animal Feeding Operation Strategy) set restrictions on the application of animal waste on agricultural lands by CAFOs.

- The ruling calls for a balance between the amount of nutrients added by the manure and the amount used by the plants and held by the soil.
The Problem

- In essence, a CAFO owner cannot apply animal waste in excess of the expected plant uptake and the soil’s ability to hold the nutrients in the animal waste applied.

- The nutrients chosen for limiting animal waste applications were nitrogen and phosphorus – each state could determine which nutrient would be the limiting nutrient.
The Objective

- In Arizona, nitrogen was considered to be the limiting nutrient since surface water is not prevalent.
- The objective was to use manure/compost in an alfalfa production system and assess whether there was nitrogen build-up in the soil.
Irrigation Ditch

<table>
<thead>
<tr>
<th>Repetition 4</th>
<th>Repetition 3</th>
<th>Repetition 2</th>
<th>Repetition 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot 12 M</td>
<td>Plot 11 N</td>
<td>Plot 9 C</td>
<td>Plot 8 M</td>
</tr>
<tr>
<td>Plot 10 C</td>
<td>Plot 7 N</td>
<td>Plot 6 N</td>
<td>Plot 5 C</td>
</tr>
<tr>
<td>Plot 11 N</td>
<td>Plot 7 N</td>
<td>Plot 6 N</td>
<td>Plot 5 C</td>
</tr>
<tr>
<td>Plot 10 C</td>
<td>Plot 9 C</td>
<td>Plot 8 M</td>
<td>Plot 4 M</td>
</tr>
<tr>
<td>Plot 11 N</td>
<td>Plot 7 N</td>
<td>Plot 6 N</td>
<td>Plot 5 C</td>
</tr>
<tr>
<td>Plot 10 C</td>
<td>Plot 9 C</td>
<td>Plot 8 M</td>
<td>Plot 4 M</td>
</tr>
<tr>
<td>Plot 11 N</td>
<td>Plot 7 N</td>
<td>Plot 6 N</td>
<td>Plot 5 C</td>
</tr>
<tr>
<td>Plot 10 C</td>
<td>Plot 9 C</td>
<td>Plot 8 M</td>
<td>Plot 4 M</td>
</tr>
<tr>
<td>Plot 11 N</td>
<td>Plot 7 N</td>
<td>Plot 6 N</td>
<td>Plot 5 C</td>
</tr>
<tr>
<td>Plot 10 C</td>
<td>Plot 9 C</td>
<td>Plot 8 M</td>
<td>Plot 4 M</td>
</tr>
<tr>
<td>Plot 11 N</td>
<td>Plot 7 N</td>
<td>Plot 6 N</td>
<td>Plot 5 C</td>
</tr>
<tr>
<td>Plot 10 C</td>
<td>Plot 9 C</td>
<td>Plot 8 M</td>
<td>Plot 4 M</td>
</tr>
<tr>
<td>Plot 11 N</td>
<td>Plot 7 N</td>
<td>Plot 6 N</td>
<td>Plot 5 C</td>
</tr>
<tr>
<td>Plot 10 C</td>
<td>Plot 9 C</td>
<td>Plot 8 M</td>
<td>Plot 4 M</td>
</tr>
</tbody>
</table>

Irrigation Ditch
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>04-23-01</td>
<td>00</td>
<td>8.25</td>
<td>00</td>
<td>00</td>
<td>00.0</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04-24-01</td>
<td>01</td>
<td>9.03</td>
<td>02</td>
<td>24</td>
<td>24.9</td>
<td>0.313</td>
<td>0.31</td>
<td>0.51</td>
<td>1.00</td>
<td>0.160</td>
<td>0.16</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04-25-01</td>
<td>02</td>
<td>7.93</td>
<td>04</td>
<td>25</td>
<td>25.1</td>
<td>0.315</td>
<td>0.63</td>
<td>0.51</td>
<td>0.90</td>
<td>0.161</td>
<td>0.32</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04-26-01</td>
<td>03</td>
<td>7.78</td>
<td>06</td>
<td>25</td>
<td>25.3</td>
<td>0.318</td>
<td>0.95</td>
<td>0.53</td>
<td>0.99</td>
<td>0.165</td>
<td>0.49</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04-27-01</td>
<td>04</td>
<td>7.59</td>
<td>08</td>
<td>25</td>
<td>25.5</td>
<td>0.320</td>
<td>1.27</td>
<td>0.55</td>
<td>0.98</td>
<td>0.173</td>
<td>0.66</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04-28-01</td>
<td>05</td>
<td>7.40</td>
<td>10</td>
<td>25</td>
<td>25.6</td>
<td>0.323</td>
<td>1.59</td>
<td>0.60</td>
<td>0.98</td>
<td>0.188</td>
<td>0.85</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04-29-01</td>
<td>06</td>
<td>7.19</td>
<td>13</td>
<td>25</td>
<td>25.8</td>
<td>0.325</td>
<td>1.91</td>
<td>0.66</td>
<td>0.97</td>
<td>0.210</td>
<td>1.06</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>04-30-01</td>
<td>07</td>
<td>6.95</td>
<td>16</td>
<td>26</td>
<td>26.0</td>
<td>0.327</td>
<td>2.24</td>
<td>0.74</td>
<td>0.96</td>
<td>0.234</td>
<td>1.29</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-01-01</td>
<td>08</td>
<td>6.69</td>
<td>19</td>
<td>26</td>
<td>26.1</td>
<td>0.330</td>
<td>2.57</td>
<td>0.82</td>
<td>0.96</td>
<td>0.258</td>
<td>1.55</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-02-01</td>
<td>09</td>
<td>6.41</td>
<td>22</td>
<td>26</td>
<td>26.3</td>
<td>0.332</td>
<td>2.80</td>
<td>0.89</td>
<td>0.95</td>
<td>0.278</td>
<td>1.83</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-03-01</td>
<td>10</td>
<td>6.11</td>
<td>26</td>
<td>26</td>
<td>26.5</td>
<td>0.334</td>
<td>3.24</td>
<td>0.94</td>
<td>0.94</td>
<td>0.295</td>
<td>2.12</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-04-01</td>
<td>11</td>
<td>5.90</td>
<td>30</td>
<td>26</td>
<td>26.7</td>
<td>0.337</td>
<td>3.67</td>
<td>0.99</td>
<td>0.92</td>
<td>0.307</td>
<td>2.43</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-05-01</td>
<td>12</td>
<td>5.48</td>
<td>34</td>
<td>26</td>
<td>26.8</td>
<td>0.339</td>
<td>3.91</td>
<td>1.02</td>
<td>0.91</td>
<td>0.316</td>
<td>2.74</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-06-01</td>
<td>13</td>
<td>5.16</td>
<td>37</td>
<td>27</td>
<td>33.7</td>
<td>0.341</td>
<td>4.25</td>
<td>1.06</td>
<td>0.90</td>
<td>0.321</td>
<td>3.07</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-07-01</td>
<td>14</td>
<td>4.83</td>
<td>41</td>
<td>27</td>
<td>36.4</td>
<td>0.343</td>
<td>4.60</td>
<td>1.07</td>
<td>0.89</td>
<td>0.324</td>
<td>3.39</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-08-01</td>
<td>15</td>
<td>4.32</td>
<td>FULL</td>
<td>30</td>
<td>39.5</td>
<td>0.357</td>
<td>4.95</td>
<td>1.08</td>
<td>1.00</td>
<td>0.385</td>
<td>3.77</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-09-01</td>
<td>16</td>
<td>7.91</td>
<td>04</td>
<td>31</td>
<td>42.6</td>
<td>0.381</td>
<td>5.53</td>
<td>1.09</td>
<td>0.99</td>
<td>0.412</td>
<td>4.19</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-10-01</td>
<td>17</td>
<td>7.49</td>
<td>09</td>
<td>33</td>
<td>46.0</td>
<td>0.392</td>
<td>5.73</td>
<td>1.11</td>
<td>0.98</td>
<td>0.424</td>
<td>4.61</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-11-01</td>
<td>18</td>
<td>7.08</td>
<td>14</td>
<td>32</td>
<td>49.3</td>
<td>0.385</td>
<td>6.09</td>
<td>1.11</td>
<td>0.97</td>
<td>0.392</td>
<td>5.00</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>05-12-01</td>
<td>19</td>
<td>6.61</td>
<td>20</td>
<td>34</td>
<td>52.7</td>
<td>0.415</td>
<td>6.51</td>
<td>1.17</td>
<td>0.95</td>
<td>0.461</td>
<td>5.46</td>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

If excess water exists, Depl.% will be "FULL"
Procedures

- Alfalfa was harvested
- Yield was determined
- Harvest was analyzed for nitrogen removed
- Manure and compost were analyzed for nitrogen
- Manure and compost were added in an amount equal to the nitrogen removed by the cutting
Digestion

Total nitrogen in the alfalfa was determined from a Kjeldahl digestion that converted the organic nitrogen to ammonium.
Addition of Manure and Compost

- Manure and compost were added, using a spreader, in the amount determined to be removed in the harvest.

- Nitrogen concentration was determined by Kjeldahl digestion and KCl extract.
Nitrogen Analysis

- Ammonium – KCl extract
- Nitrate – KCl extract
- Organic Nitrogen – TKN minus ammonium
- Total Nitrogen – TKN plus nitrate
Procedures

- Drainage was analyzed for nitrogen and phosphorous.
- Soil samples were analyzed for nitrogen, phosphorous, and electrical conductivity.
RESULTS
Alfalfa Yield and Nitrogen Composition

- Total yield did not vary between treatments.

- Nitrogen removed in alfalfa harvest did not vary between treatments.
Average Yield

Month/Yr

April 01, May 01, June 01, July 01, August 01, September 01, November 01, February 02, April 02, May 02, June 02, July 02, August 02

Average Yield (kg/ha)

- No Nitrogen
- Compost
- Manure

Graph showing the average yield over time with different treatments.
Alfalfa Yield

Total Yield (kg/ha)

- No Nitrogen
- Compost
- Manure
Nitrogen Removed

Average N Removed in Harvest (kg/ha)

Month/Yr

- No Nitrogen
- Compost
- Manure
Total N Removed for the Entire Study Period

No Nitrogen	Compost	Manure
1200 kg/ha | 1200 kg/ha | 1200 kg/ha
Manure and Compost Composition

- More ammonium was applied to the manure plots.
- More nitrate was applied to the compost plots.
- About equal amounts of total nitrogen was applied to all treatment plots.
Manure and Compost Composition

- More phosphorous was applied to manure plots.

- More total dissolved solids were applied to manure plots.
Manure/Compost NO3-N Content

Average NO3-N Applied (kg/ha)

Month/Yr

Manure

Compost
Manure/Compost EC Values

<table>
<thead>
<tr>
<th>Month/Yr</th>
<th>Average Electrical Conductivity (dS/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 00</td>
<td>60</td>
</tr>
<tr>
<td>May 01</td>
<td>90</td>
</tr>
<tr>
<td>Aug 01</td>
<td>70</td>
</tr>
<tr>
<td>Oct 01</td>
<td>60</td>
</tr>
<tr>
<td>Jul 02</td>
<td>70</td>
</tr>
</tbody>
</table>

- **Manure**
- **Compost**
Manure/Compost Phosphorus Concentration

Month/Yr:
- Nov 00
- May 01
- Aug 01
- Oct 01
- Jul 02

Average PO4-P Concentration (mg/kg):
- Manure
- Compost
Soil Composition

- Compost plots were higher in total nitrogen.
- All plots were similar in ammonium.
- Manure and compost plots were higher in nitrate.
Soil Composition

- Manure and compost plots were higher in phosphorus.

- All plots were similar in electrical conductivity.
Soil Ammonium
October 2000

Average NH$_4$-N (kg/ha)
Soil Ammonium
August 2002

Average NH4-N (kg/ha)

15 cm 30 cm 45 cm 60 cm 90 cm 120 cm 150 cm

No Nitrogen Compost Manure
Soil Nitrate
October 2000

Average NO3-N (kg/ha)

No Nitrogen

Compost

Manure

15 cm 30 cm 45 cm 60 cm 90 cm 120 cm 150 cm
Soil Nitrate
August 2002

Average NO₃-N (kg/ha)

No Nitrogen
Compost
Manure

15 cm 30 cm 45 cm 60 cm 90 cm 120 cm 150 cm
Soil Phosphorus
August 2002

Average PO4-P (kg/ha)

0 20 40 60 80 100 120 140

15 cm 30 cm 45 cm 60 cm 90 cm 120 cm 150 cm

No Nitrogen
Compost
Manure
Lysimeter Results

- Little drainage was obtained during the study.
- No detectable nitrate or phosphate was found in the drainage water.
Conclusions

- All treatments had the same yield and N concentrations – Thus the addition of the manure/compost had no effect.

- Although not statistically significant – the no nitrogen treatment had a slightly higher yield, probably due to less surface traffic.
Conclusions

- Nitrogen mass balance showed that a substantial amount of nitrogen in the manure plots were unaccounted for.

- Even the phosphorus readings were low for the manure treatment.
Soil Phosphorus
August 2002

Average PO4-P (kg/ha)

No Nitrogen
Compost
Manure

15 cm 30 cm 45 cm 60 cm 90 cm 120 cm 150 cm
Manure/Compost Phosphorus Concentration

Average PO4-P Conc. (mg/kg)

- **Manure**
- **Compost**

Month/Yr:
- Nov 00
- May 01
- Aug 01
- Oct 01
- Jul 02
Manure Discrepancies

- The low values for nitrogen and phosphorus in the soil manure plots suggests that manure was lost somehow.

- Reports from the farm manager indicated that the hay was “dirty” and “not salable” because of the manure chunks in the bales.
Manure Discrepancies

- One theory was that the manure was physically removed from the plots, thus causing lower than expected values.

- The other is that the manure is still there and sitting on the surface.
Long-term Projections

- Nitrogen increases in the treated plots may threaten groundwater quality

- Phosphorous increase may threaten environmental quality
Questions?