Solarization and use of compost in vegetable crops

Mohammed Zerkoune
Holtville, CA
December 3, 2003
Manure is recognized:

• Source of complex nutrients
• Slow release of nutrients
• Improve soil physical properties: soil structure, aeration, infiltration, bulk density
• High value of nutrient when applied close to planting date (N)
• Open market for organic production
Raw manure
Use of Animal waste

- Use of raw manure
- Compost and co-compost
- Solarization of manured soils
Manure production

- Total annual livestock waste in the US is about 2.2 billion tons of manure
- 7.5 million tons of N and 2.3 million tons of P.
- Synthetic fertilizer used annually in the US contains 10 million tons of N and 2 million tons of P (ElAhraf and Willis, 1996). If all collected and utilized, manure would provide 112, 100 LB/A N and P, respectively (Eghball and Power, 1994).
- Nutrients from manure could potentially supply an equivalent of 461 million dollars if purchased as synthetic fertilizer (ElAhraf and Willis, 1996; Eghball and Power, 1994).
Why manure is a problem today but was not 50 years ago?
Manure problems today

• Increasing farm and CAFO size
• while decreasing in number
• Industrialized grain and livestock operation: Without integration
 – Producers rely on commercial fertilizer: decline in soil quality
 – Feedlot operators see manure as waste management problems.: Increasing distance between CAFO and field crops:. High cost of hauling
Disadvantage of manure

- High salt content
- High water content: (dairy), cost of hauling
- Disposed on fields near CAFO: Pollution problems
- Application uniformity: difficult to achieve
- Weed infestation
- Plant and human pathogens
Disadvantage of raw manure (contin’d)

• Nutrient N loss when applied far from planting
• Imbalance of nutrient loading: nitrogen vs phosphorus
• Variable and unstable nutrient content
• High transport cost
• Odors: near urban areas
Composting
Composting

• Hot and arid climate and manure handling practices in Southwest are adequate to control the risks from pathogens and weed seed that may be in manure
• Although composting manure induces additional handling cost, thermophilic composting improves manure stability, suppresses pathogen and weed seed viability
• Agronomic benefits of fresh or composted manure application on crop yield, and on soil quality as measured by physical and chemical properties, are significant.
Composting and Co-composting

- Pathogen and weed destruction
- Easier to apply
- Nutrient stability
- Increase C:N ratio: adding C source
 - C: fuel to microorganisms
 - N: protein for microorganism to thrive
 - Reduction of salt: dilution with residue
Mixing: NH3 volatilization
Weeds tested

- Canary grass
- Ivy (morning glory)
- Lambsquarters
- Wild mustard
- Velvet
- Sorghum
- Ray grass
Seed viability

• After 14 days only Ivy appeared to survive the heat inside the windrow. After one months no seed remained viable in the windrow at 30 inch.
• This investigation is still in progress, Seed buried at 15 inch the wheat and manure compost and non composted manure will be tested.
Compost: an alternative to raw manure

– Better amendment quality
– Environmental sustainability
– Requires time and money
– Requires investment machinery
– Need economic study
Pathogen and weeds

- Less than 1% of weed seeds found in composted manure
- Less than 10 MPN /gram in E coli bacteria
Solarization
Solarization

- Solarization is a non chemical pre-planting soil treatment used successfully to control pathogens and weeds.
- It is a hydrothermal process combining moist soil and clear plastic tarps allowing a direct sunlight during hot summers to raise temperature enough to suppress weeds and pathogens underneath clear plastic.
- It is anticipated that temperatures under plastic tarps will be elevated as high as 150 F, enough to destroy weed seed and soil born pathogen viability.
Solarization

- 10 t/A beef cattle manure and 3 t/A chicken applied 10-3-03 on two 84 inch beds, mixed to 3 inch top soil and control, covered with VIF on 10-4, 03
- Subsurface irrigated (drip) until beds were sufficiently wet. No additional irrigation afterward
Materials and Methods

- Clear plastic VIF was laid prior irrigation
Results

- Manure treatments averaged over mulch:
 - Chicken and Beef manure trt were high but equal in TN
 - High but significantly different in NO3
 - Both low in NH3
Results

• Mulch averaged over manure treatments
 – TN and NO3 were significantly higher under mulch
 – Effect of mulch on NO3 accumulation
Soil moisture and temperature

- Soil moisture 6% no mulch
- Soil moisture 20% mulch
- 10-14-03:
Drip Tape Buried at
4 inc
No tarp
Materials and Methods Cont’d

- Inline Chloropicrin applied at 16, 20.5 gal/A
 - Tarp and no tarp
- Chloropicrin applied under tarp
- Metam applied at 35 gal/A
 - under tarp and no tarp
- Control
 - tarp and no tarp

All trt applied in 35 gal. Water thru. ventury
Material and Methods

- 84 inc-bed
- Drip tape placed at 4, and 9 inch for subsurface treatment injection
Yield, kg
Conclusion

• Although composting manure induces additional handling cost, thermophilic composting improves manure stability, suppresses pathogen and weed seed viability

• Composting induces NH3 via volatilization

• Agronomic benefits of fresh or composted manure application on crop yield, and on soil quality as measured by physical and chemical properties, are significant.
Conclusion continued

• *Significant* increase in temperature due to the use of VIF
• Significant N loss reduction when VIF is used on manured soils
• These results are preliminary, further study is needed
• Solarization is often combined with fumigation treatments to increase the efficacy
Thank you