Solarization and use of compost in vegetable crops

Mohammed Zerkoune
Holtville, CA
December 3, 2003

Manure is recognized:
• Source of complex nutrients
• Slow release of nutrients
• Improve soil physical properties: soil structure, aeration, infiltration, bulk density
• High value of nutrient when applied close to planting date (N)
• Open market for organic production

Raw manure

Use of Animal waste
• Use of raw manure
• Compost and co-compost
• Solarization of manured soils

Manure production
• Total annual livestock waste in the US is about 2.2 billion tons of manure.
• 7.5 million tons of N and 2.3 million tons of P.
• Synthetic fertilizer used annually in the US contains 10 million tons of N and 2 million tons of P (ElAhraf and Willis, 1996). If all collected and utilized, manure would provide 112,100 LB/A of N and P, respectively (Eghball and Power, 1994).
• Nutrients from manure could potentially supply an equivalent of 461 million dollars if purchased as synthetic fertilizer (ElAhraf and Willis, 1996; Eghball and Power, 1994).

Why manure is a problem today but was not 50 years ago?
Manure problems today

- Increasing farm and CAFO size
- while decreasing in number
- Industrialized grain and livestock operation: Without integration
 - Producers rely on commercial fertilizer: decline in soil quality
 - Feedlot operators see manure as waste management problems: Increasing distance between CAFO and field crops: High cost of hauling

Disadvantage of manure

- High salt content
- High water content: (dairy), cost of hauling
- Disposed on fields near CAFO: Pollution problems
- Application uniformity: difficult to achieve
- Weed infestation
- Plant and human pathogens

Disadvantage of raw manure (contin’d)

- Nutrient N loss when applied far from planting
- Imbalance of nutrient loading: nitrogen vs phosphorus
- Variable and unstable nutrient content
- High transport cost
- Odors: near urban areas

Composting

- Hot and arid climate and manure handling practices in Southwest are adequate to control the risks from pathogens and weed seed that may be in manure
- Although composting manure induces additional handling cost, thermophilic composting improves manure stability, suppresses pathogen and weed seed viability
- Agronomic benefits of fresh or composted manure application on crop yield, and on soil quality as measured by physical and chemical properties, are significant.
Composting and Co-composting

- Pathogen and weed destruction
- Easier to apply
- Nutrient stability
- Increase C:N ratio: adding C source
 - C: fuel to microorganisms
 - N: protein for microorganism to thrive
 - Reduction of salt: dilution with residue

Mixing: NH₃ volatilization

Weeds tested

- Canary grass
- Ivy (morning glory)
- Lambsquarter
- Wild mustard
- Velvet
- Sorghum
- Ray grass
Seed viability

- After 14 days only Ivy appeared to survive the heat inside the windrow. After one month no seed remained viable in the windrow at 30 inch.
- This investigation is still in progress. Seed buried at 15 inch the wheat and manure compost and non composted manure will be tested.

Compost: an alternative to raw manure

- Better amendment quality
- Environmental sustainability
- Requires time and money
- Requires investment machinery
- Need economic study

Pathogen and weeds

- Less than 1% of weed seeds found in composted manure
- Less than 10 MPN /gram in E coli bacteria

Solarization
Solarization

- Solarization is a non-chemical pre-planting soil treatment used successfully to control pathogens and weeds.
- It is a hydrothermal process combining moist soil and clear plastic tarps allowing direct sunlight during hot summers to raise temperatures enough to suppress weeds and pathogens underneath clear plastic.
- It is anticipated that temperatures under plastic tarps will be elevated as high as 150°F, enough to destroy weed seed and soil born pathogen viability.

Materials and Methods

- Clear plastic VIF was laid prior to irrigation.

Results

- Manure treatments averaged over mulch:
 - Chicken and Beef manure trt were high but equal in TN
 - High but significantly different in NO3
 - Both low in NH3

- Mulch averaged over manure treatments:
 - TN and NO3 were significantly higher under mulch
 - Effect of mulch on NO3 accumulation

- Soil moisture and temperature:
 - Soil moisture 6% no mulch
 - Soil moisture 20% mulch
 - 10°F

- 10 t/A beef cattle manure and 3 t/A chicken applied 10-3-03 on two 84 inch beds, mixed to 3 inch top soil and control, covered with VIF on 10-4-03
- Subsurface irrigated (drip) until beds were sufficiently wet. No additional irrigation afterward
Materials and Methods Cont’d

- Inline Chloropicrin applied at 16, 20.5 gal/A
 - Tarp and no tarp
- Chloropicrin applied under tarp
- Metam applied at 35 gal/A
 - under tarp and no tarp
- Control
 - tarp and no tarp

All ttr applied in 35 gal. Water thru. ventury
Yield, kg

Conclusion

- Although composting manure induces additional handling cost, thermophilic composting improves manure stability, suppresses pathogen and weed seed viability
- Composting induces NH3 via volatilization
- Agronomic benefits of fresh or composted manure application on crop yield, and on soil quality as measured by physical and chemical properties, are significant.

Conclusion continued

- Significant increase in temperature due to the use of VIF
- Significant N loss reduction when VIF is used on manured soils
- These results are preliminary; further study is needed
- Solarization is often combined with fumigation treatments to increase the efficacy.

Thank you