HEIRLOOM FLOWER SEED

Antique or heirloom flowers are open-pollinated varieties that originated fifty or more years ago. Open-pollinated flowers are fertilized by insects, hummingbirds or wind, and the resulting seeds will produce plants that are identical or very similar to the parent plant.

A most unusual marigold, the harlequin is nothing like those seen in today’s gardens. It was popular in the late 1700’s, and all but disappeared over the years. Still hard to find, it is worth locating. Like all marigolds, this one is ridiculously easy to grow. The tall, bushy plants contain countless yellow and red striped flowers. Harlequin marigolds require lots of room, as each plant can grow as wide as 3 feet.

For so many gardeners, hollyhocks bring back memories of helping grandma in her flower beds. Grown in the 1700’s, where they were planted around outhouses, they lost popularity over the years. They have made a much deserved comeback. This variety produces single flowers growing up stalks that can reach six feet or more, in a wide variety of colors. Bowles Black is a favorite, but is actually a gorgeous dark purple. Hollyhocks are biennials, meaning they produce leaves the first year, and will flower the second. When planted for a few successive years, they will seem like perennials because there will be flowers every year.

An heirloom plant is one that was being grown at least half a century ago, though some species are hundreds of years old. They are usually hardier than today’s hybrids, and easier to grow. The flowers may not be as large or as brightly colored as those currently seen in catalogs and garden centers, but usually have a stronger scent. These old fashioned plants used to be found in gardens on old homesteads, abandoned properties, or even old cemeteries, but are now widely available through mail order companies.

Yuma County is home to roughly 100 acres of flowers grown for specifically for its seed. Viewed broadly, vegetable and flower seed production here in the desert Southwest represents a multimillion dollar industry.

Before modern mass production, many gardeners raised their own annual and biennial flowers from seed. These flowers might self seed in the garden or the gardener faithfully saved the seed from year to year. Among the many, many choices: zinnia, balsam, larkspur, calendula, snapdragon, love-in-a-mist, marigold, sunflower, hollyhock, the sweet faced Johnny-jump-up and the many different seed-grown poppies.

Recent advances in transplanting technology have increased the demand for high vigor seed. Professional bedding plant and cut flower growers demand not only seeds with high viability, but seeds that will yield a very high percentage of uniform seedling plants. This high seed vigor requirement puts an additional challenge on the seed producer.

Pollination is the most essential part of seed production. It defines both the seed yield and genetic purity aspects of the commercial seeds.
Weed management in seed production is important for two primary reasons. Weed competition can result in reduced seed yields and seed quality, and in some cases increased disease risk. Weed seeds can contaminate harvested crop seeds.

Weed management in seed crops can be more difficult than in fresh market crops because the seed crop is in the field longer, exposing the field to more wind-disseminated weed seeds, more weed seed germination windows, and more time for weeds to mature and set seed.

Once a superior variety of seed is developed, painstaking effort must be taken to keep it pure and produce it in large quantities for use.

The primary purpose of seed conditioning and cleaning is to remove unwanted inert material, weed seed, other crop seed, and small, less vigorous seed.

The management of weeds and pests in seed production poses additional problems due to their longer growing season not encountered for vegetables or flowers grown for market use. This extended growing period necessitates an increase in residual pesticide activity or additional pesticide applications.

Seed growers are well acquainted with the characteristics of the varieties grown for seed so that they may effectively rogue out the off-types and undesirable plants at different stages of crop growth. Leaf and stem characters can easily be identified even at the seedling stage.

Traditionally, seeds are harvested close to the time of seed dispersal, i.e. when the seed pods are dry and are close to being open.

In the open field, pollination is done by wind or insects, depending on the specific floral type and properties of the crop species. Varieties of the same species will inter-cross with each other. To ensure varietal purity, care has to be taken that different seed crops of the same species are not grown closely together. The isolation distance requirements generally range from 1000 to 2000 feet or more, depending on whether the crop is mostly insect- or wind-pollinated.

Pollination management for open pollinated crops begins with selecting production locations naturally conducive to good seed set. Optimum climactic conditions must fit the crop's temperature and light requirements for flowering, pollen production and stigma receptivity. Insect-pollinated crops are best placed in locations where natural pollinator populations are high.

Kurt Nolte is an area agriculture agent with the Yuma County Cooperative Extension. He can be reached at 928-726-3904.