How much are we missing? Field validation of historic aerial photography

Dawn M. Browning1, Andrew T. Byrne2 and Steven R. Archer1

1 School of Natural Resources, University of Arizona, Tucson, AZ 85721
2 Biology Department, Clarkson University, Potsdam, NY 13699

dbrownin@ag.arizona.edu

Problem:

• Historic aerial photography is often used to derive base-line conditions for vegetation cover in studies quantifying land cover change.
• Spatially-explicit data of sufficient quality are rarely available to retrospectively validate estimates of vegetation cover and determine detection limits for early aerial photography.

Research Questions:

(1) What are detection limits of 1936 aerial photography (i.e., smallest reliably discernable canopy for dominant woody plant species, Prosopis velutina)?
(2) How much P. velutina biomass is missed using 1930s aerial photography?
(3) How well do estimates of shrub canopy area determined by manual digitizing 1930s aerial photos correspond to field measurements of canopy area?

Approach:

- Two - 1.8 ha (440-m X 40-m) plots were established on a desert grassland site on the Santa Rita Experimental Range in southwestern Arizona by W. McGinnies in 1932. The location and canopy dimensions for all P. velutina plants in each plot were recorded (Glendening 1952).
- Plant locations from McGinnies’ 1932 maps were digitized and incorporated into a GIS.
- Shrub canopies on February 1936 aerial photography (1:31,640) were digitized and matched with field measurements (Figs. 1 and 2). The effect of spatial resolution on detection limits was determined by re-scaling digital images to 0.6-m and 1.0-m pixel sizes.
- P. velutina plants mapped in 1932 but not evident in 1936 aerial photos were tabulated and categorized as (1) missed (not discernable on photography), (2) not digitized (did not appear as a distinct shrub canopy based on pre-defined detection protocols), or (2) co-registration error (unable to confidently match the plant with associated digitized patch) (Fig. 6).
- An allometric relationship between mesquite canopy area and aboveground biomass (\(R^2 = 0.97, n = 32\) trees) (Archer et al., in prep) was used to estimate woody biomass for each plant.
- Linear regression was used to quantify relationship between patch area delineated on 1936 photography with 1:31,640 field measurements of canopy diameter. Only patches corresponding to a single P. velutina plant were included. Cases where individual plant canopies could not be reliably distinguished due to their close proximity to other plants were excluded from the comparison.

Results:

1) Plants smaller than 4-m² not reliably detected with 1936 aerial photography.
2) Spatial resolution of processed imagery did not affect detection limits, but shrubs were perceived as being larger at the 1.0-m pixel size than at the 0.6-m pixel size. This is consistent with the findings of Fensham and Fairfax (2007) that canopies appear larger with larger photo scale.

3.5% of aboveground woody biomass was missed using manually-delineated shrub cover estimates on 1936 photography (at both spatial resolutions) using 3.8-m² size threshold (Fig. 6).

Implications:

• 1936 aerial photography generated reliable, accurate estimates of woody plant cover in relation to 1932 field assessments.
• Detection limits for exceedepixel size (i.e., ~1-m²). Base-line conditions derived using 1930s aerial photography in this desert grassland system are limited by ~3.8-m² detection limitation.
• Although plants below detection limits comprised only a small fraction of the total biomass on the 1936 imagery, these are ostensibly the most dynamic constituents of the plant population and are important to projecting future stand dynamics and hence the biogeochemical consequences of woody plant encroachment (e.g., Wheeler et al. 2007). The quality and scale of aerial photography assessed in this study, which is fairly typical, cannot be used to inventory and monitor dynamics of these elements of a shrub population.
• It is not known how long it takes P. velutina plants to reach sizes that can be detected on aerial photographs. Estimates from a complimentary study suggest it may take 16 years for P. velutina canopies to reach 4.0-m² size (Browning et al. in review).

Acknowledgments:

The historic legacy of W. McGinnies is recognized and extraordinary. This research was funded, in part, by a NASA Grant NAG5-11238. Andy Byrne was supported by the NSF Research Experience for Undergraduate Program and Dawn Browning was supported by an EPA STAR Fellowship. Andy Hornaman graciously provided technical assistance with computing logistics; the School of Natural Resources provided computing resources.

Literature Cited:


