Conformational Switching by the Scaffolding Protein D Directs the Assembly of Bacteriophage ϕX174

Marc C. Morais,1,3 Megan Fisher,1,3 Shuji Kanamaru,1,4 Laralyne Przybyla,1 John Burgher,1 Bentley A. Fane,2 and Michael G. Rossmann1,*

1Department of Biological Sciences
Purdue University
915 West State Street
West Lafayette, Indiana 47907
2Department of Veterinary Science and Microbiology
University of Arizona
Building 90
Room 201
Tucson, Arizona 85721

Summary

The three-dimensional structure of bacteriophage ϕX174 external scaffolding protein D, prior to its interaction with other structural proteins, has been determined to 3.3 Å by X-ray crystallography. The crystals belong to space group P4_12_12 with a dimer in the asymmetric unit that closely resembles asymmetric dimers observed in the ϕX174 procapsid structure. Furthermore, application of the crystallographic 4, symmetry operation to one of these dimers generates a tetramer similar to the tetramer in the icosahedral asymmetric unit of the procapsid. These data suggest that both dimers and tetramers of the D protein are true morphogenetic intermediates and can form independently of other proteins involved in procapsid morphogenesis. The crystal structure of the D scaffolding protein thus represents the state of the polypeptide prior to procapsid assembly. Hence, comparison with the procapsid structure provides a rare opportunity to follow the conformational switching events necessary for the construction of complex macromolecular assemblies.

Introduction

The assembly of complex macromolecules typically proceeds along well-ordered morphogenetic pathways. Although macromolecular assembly is a fundamental biological process, assembly pathways have been characterized most thoroughly in viral systems (Casjens and Hendrix, 1988; King et al., 1980). A generally accepted model for virion morphogenesis invokes the notion of “conformational switching” (Berget, 1985; Caspar, 1980; King et al., 1980; Wood and Conley, 1979). In this model, a nucleation event initiates assembly. In each subsequent step, a protein that binds to the growing structure undergoes a conformational change, creating a new binding site for the next protein. Although scaffolding proteins are not found in mature virions, capsid assembly frequently requires their participation to nucleate the reaction and ensure temporal fidelity (Casjens and Hendrix, 1988; Fane and Prevelige, 2003; King and Casjens, 1974; Ray and Murialdo, 1975; Showe and Black, 1973). The absence of scaffolding proteins results in either arrested assembly or aberrant particle formation. Thus, scaffolding proteins function as higher order equivalents of molecular chaperones, regulating quaternary structure in the same way that chaperones regulate tertiary structure (Dokland, 1999).

Bacteriophage systems, in which biochemical, genetic, and structural data can be correlated, have been particularly informative in the study of scaffolding-directed assembly (Dokland et al., 1997, 1999; Fane and Prevelige, 2003; Hayashi et al., 1988; Morais et al., 2003; Sun et al., 2000; Thuman-Commike et al., 2000). Bacteriophage ϕX174 utilizes two scaffolding proteins for capsid morphogenesis, whereas most larger double-stranded DNA (dsDNA) viruses employ only one. The internal scaffolding (B) and external scaffolding (D) proteins perform most or all the functions associated with single scaffolding proteins found in other viral systems.

The first detectable ϕX174 assembly intermediates are the 9S and 6S particles, pentamers of the F viral coat and G spike proteins, respectively (Figure 1A). Twenty external D scaffolding proteins then bind to 12S particles to form 18S particles, thereby inducing conformational changes that enable the 18S pentamers to associate into icosahedral, “open” procapsids (Fane and Hayashi, 1991; Fujisawa and Hayashi, 1977; Siden and Hayashi, 1974; Tonegawa and Hayashi, 1970). Procapsids have a 360 Å diameter with their 5-fold vertices characterized most frequently as icosahedral symmetric unit of the procapsid. In the closed procapsid, these pores are occluded by the α helices of 3-fold related F capsid proteins. DNA packaging and maturation brings about a radial collapse of the procapsid, resulting in the closure of the gaps surrounding the F pentamers and movement of the α helices into the pores at the 3-fold axes.

The open procapsid, which most likely represents the true morphogenetic intermediate, has been examined by cryo-electron microscopy (cryo-EM) (Dokland et al., 1999). In contrast to the closed procapsid, the open procapsid has 30 Å pores along the 3-fold icosahedral axes and 10 Å gaps between the F capsid pentamers. In the closed procapsid, these pores are occluded by the α helices of 3-fold related F capsid proteins. DNA packaging and maturation brings about a radial collapse of the procapsid, resulting in the closure of the gaps surrounding the F pentamers and movement of the α helices into the pores at the 3-fold axes.
Figure 1. The Structure and Organization of the Scaffolding Protein D

(A) Procapsid assembly in φX174. The first morphogenetic intermediates in the assembly pathway are the 9S and 6S particles, pentamers of the F capsid (shown in pink) and G spike proteins (shown in blue), respectively. Five copies of the internal scaffolding protein B (shown in white) promote the association of 9S and 6S particles to form 12S intermediates. Asymmetric dimers of the external D scaffolding protein (shown in green) direct the assembly of pentameric 12S intermediates into the procapsid shell. The icosahedral asymmetric unit of the procapsid is indicated in black.

(B) Stereo diagram showing the lattice of the D protein in the procapsid. There are four copies of the external D scaffolding protein (D1, blue; D2, yellow; D3, red; and D4, green) in the icosahedral asymmetric unit of the procapsid. The icosahedral asymmetric unit and its associated symmetry elements are shown in black.

(C) Stereo diagram of monomer D4 of the procapsid shown diagrammatically with cylinders for helices. Helices and loops are labeled using Greek and cursive fonts respectively.

The monomers within each asymmetric dimer are related by a 51° rotation. Whereas D1 and D3 are quite similar in structure (with an rms deviation of 1.4 Å between equivalent Cα atoms), they differ substantially from the structures of D2 and D4 (Table 1).

Conformational changes in protein structure are invoked in numerous hypotheses regarding molecular mechanisms in biology, but only in a few cases is the precise nature of these changes known. Here, we present the crystallographic structure of the φX174 external scaffolding protein prior to conformational changes induced by other structural proteins. Combining these results with the previously reported biochemical and structural data for φX174 (Burch and Fane, 2003; Dok-
land et al., 1997; Hayashi et al., 1988; A. Uchiyama and B.A.F., unpublished data) illuminates the conformational changes that occur during the assembly of a virus.

Results

The oligomeric state of the D protein was characterized by gel filtration and sedimentation experiments (see Experimental Procedures). Gel filtration showed that the protein had formed tetramers in solution, consistent with previous results (Farber, 1976; Tonegawa and Hayashi, 1970). Sedimentation velocity and equilibrium experiments indicated an equilibrium between dimers and tetramers.

The X-ray crystallographic structure of the D scaffolding protein was determined to 3.3 Å resolution by molecular replacement using D protein models obtained from the procapsid crystal structure (Dokland, 1999). Since four structurally distinct copies of protein D (D1–D4) are in the procapsid’s icosahedral asymmetric unit, there was no way of knowing a priori which conformer would correspond most closely to the crystallized D protein. Therefore, each of the four conformationally different copies of the D protein was used as an initial search model. The best result was obtained using monomer D4. Assuming a Matthews coefficient of 2.5 Å3/Da, four monomers were expected in the asymmetric unit. It was, therefore, surprising that only two copies, D4a and D4b, were found in the asymmetric unit, corresponding to a Matthews coefficient of 5.0 Å3/Da and a solvent content greater than 70%.

The structure of D4a is closest to the structures of D1 and D2, whereas the structure of D4b is closest to the structures of D3 and D4 (Figure 2A; Table 1). Furthermore, the angle between D4a and D4b is 51°, very similar to the angle between D1 and D2 and between D3 and D4. Thus, the D4a-D4b dimer in the crystallographic asymmetric unit is similar to the asymmetric dimers D1-D2 and D3-D4, suggested as assembly intermediates of the procapsid (Dokland et al., 1997). In addition, the 4-screw relationship between neighboring asymmetric units in the D4a-D4b crystal is approximately found between the two asymmetric dimers in the procapsid (Figures 2B and 2C). Whereas the rotation is 90° and the translation is 31.8 Å between the asymmetric dimer D1-D2 and the 4-screw related asymmetric dimer D4a-D4b in the crystal, the rotation is 114° and the translation is 40 Å between the D4a-D4b dimers in the procapsid. There are no other symmetry contacts between the D molecules in the crystal that resemble other D-D contacts in the procapsid. For instance, there are 2-fold symmetry operators in the D4a-D4b crystal structure, but these have no relation to the 2-fold axes in the icosahedral procapsid.

In both the D4a-D4b crystal structure and in the procapsid structure, the interdimer interface resembles the intradimer interface. In the procapsid, the D1-D2 interface is similar to the D4a-D4b interface (Figure 3A), and in the D4a-D4b crystal structure the D3-D4d’ interface is similar to the D4a-D4b interface (Figure 3B). The difference between the inter- and intradimer interfaces is determined by whether helix α3 is straight or kinked. Specifically, the interface within an asymmetric dimer involves a kinked helix α3 in D4a, D1, or D3, whereas the interface between asymmetric dimers involves a straight helix α3 in D4b or D2, respectively. Therefore, the crystal structure can be described approximately as having an 8-fold screw helix with an average rotation of 45° (alternate rotations of 51° and 39°) and translation of 15.9 Å between individual D molecules. The same is true for the procapsid, except the oligomerization extends only over four D molecules (Figures 2B and 2C). Indeed, if there were no conformational switching and two D molecules were to bind with a 45° rotation, then an infinite 8-fold screw helix would result (Caspar and Klug, 1962). The oligomeric form of D protein in solution suggests that the basic morphogenetic building block is a tetramer composed of two consecutive asymmetric dimers arranged as found both in the D4a-D4b crystal structure and the procapsid. Conformational switching, when two asymmetric dimers associate to form a tetramer, presumably inhibits further oligomerization (see below).

In each monomer of the tetramer, there is a structurally conserved core consisting of approximately 50% of the sequence (residues 27–60, 73–98, and 116–128). The cores superimpose with an rms deviation of less than 2.5 Å. Large differences are localized to four regions: (1) the kink in helix α3, which also determines the position of loop 3; (2) the degree of order and position of helix α7; (3) the orientation of helix α1 relative to the core; and (4) the degree of order and position of loop S. In the procapsid, all of these regions are component parts of intermolecular contacts between D and F, D and G, or D and neighboring D proteins. These differences, discussed in turn below, are most likely critical for morphogenesis, providing unique binding surfaces for directing assembly (Burch and Fane, 2000, 2003; Dokland et al., 1999; A. Uchiyama and B.A.F., unpublished data).

Discussion

The α3 Helix in the D Protein

The two D molecules within the asymmetric dimer differ especially in the kinking of helix α3, suggesting the presence of a conformational switch in the dimerization process. The kink in helix α3 can only be accommodated by a glycine residue at position 61, since the torsion angles necessary to form the kink occupy a forbidden region of the Ramachandran plot. The importance of this glycine has been demonstrated in vivo by site-directed mutagenesis (Burch and Fane, 2003). Substitutions for this glycine result in dominant lethal phenotypes, which indicates that the mutant protein is still capable of interacting with wild-type protein in coinfectcd cells. However, this interaction sequesters the wild-type protein, thus preventing the formation of procapsids.

If there were no conformational switch in the formation of an asymmetric dimer, then helix α3 in D4a would be kinked as it is in D4b, allowing D4b to form an interface with D1 identical to that between D1 and D2, creating a further 51° rotation (alternatively, all the α3 helices might have been straight). This process could continue indefinitely creating a helix, but it does not because of the conforma-
Figure 2. The Structure of the D Protein Prior to Procapsid Assembly

(A) Stereo diagram showing one asymmetric dimer, with D_A shown in magenta and D_B in cyan.

(B) Arrangement of the D protein in the crystal lattice, viewed down the 41 axis. Unit cell boundaries and symmetry elements are shown in black.

(C) Stereo diagram showing D protein tetramers superimposed. D_1, D_2, D_3, and D_4 from the procapsid icosahedral asymmetric unit are shown in blue, yellow, red, and green, respectively, D_A and D_B from the P41212 crystal structure are shown in light gray, D_A and D_B in dark gray. The asymmetric dimer D_A/D_B was generated via one application of the crystallographic 41 operator to the D_ADB dimer. The procapsid icosahedral symmetry elements and the crystallographic 41 axis are shown in black.

Structural changes in D_2. As a result, the D_2-D_3 binding surface (1512.54 Å^2) is not as extensive as the D_1-D_2 binding surface (2270.48 Å^2), suggesting that the asymmetric dimers are stable assembly intermediates. However, these dimers are still able to assemble with each other via the decreased binding surface, inducing conformational changes on each other that inhibit further polymerization at either end of the tetramer. Binding of the tetramer to the 12S particle induces mutual conformational changes necessary for procapsid formation. During crystallization, there is a separation of the asymmetric dimers, reversing the conformational switch that occurred in tetramer formation and, therefore, creating the infinite 81 helices in the crystal. Hence, the D_A/D_B dimer in the crystal structure probably represents the structure of the asymmetric dimer prior to tetramerization.
Conformational Switching by φX174 Protein D

Figure 3. Stereo Diagram Showing the Superposition of D Protein Dimers
(A) Superposition of D1D2 and D2D3. D1 and D2 are shown in light and dark gray, respectively. D2 and D3 are colored as in previous figures, with D2 in yellow and D3 in red. Icosahedral 2-fold symmetry axes are indicated as black ellipses.
(B) Superposition of DADB and DBDA. The rotated/translated copies of DA and DB are shown in light and dark gray, respectively. DB and DA are shown in cyan and magenta, respectively. The crystallographic 41 axis is indicated in black.

Helix α7 in the D Protein
The C termini of the D proteins in the closed procapsid are structurally diverse. In D1, D2, and D3, the terminus is solvent exposed and either partly or completely disordered. In D4, however, it is ordered all the way to the end of the protein, forming the long, straight helix α7, and is responsible for most of the interactions between the external D scaffolding proteins and the F capsid protein, as observed in the closed procapsid. In the D4 subunit, there are five ordered N-terminal residues in helix α7. This suggests that helix α7 becomes ordered only when these residues contact the capsid protein F, thereby locking the D tetramers onto the 12S particle. Chimeric φX174 external scaffolding proteins in which the wild-type helix α7 has been replaced with the homologous helix from another Microviridae bacteriophage cannot assemble structural proteins into either procapsids or aberrant large particles (Burch and Fane, 2003). However, productive morphogenesis can be restored by introducing amino acid substitutions in helix α4 of the capsid protein (A. Uchiyama and B.A.F., unpublished data). These results suggest these two helices interact to initiate coat-scaffolding protein interactions and, perhaps, maintain open pores at the 3-fold axes of symmetry. Such an interaction would most likely be with helix α1 of D4, which is closest to the icosahedral 3-fold axes of symmetry in the atomic structure of the closed procapsid.

Loop 5 in the D Protein
Loop 5 is the most polymorphic feature in the closed procapsid structure. The D4 subunit, equivalent to D1 and D2 in the procapsid, loop 5 is an α helix, whereas in the D4 subunit, equivalent to D2 and D3, loop 5 is entirely disordered. However, loop 5 has a β structure in D4. Thus, apparently, when the D tetramers bind to 12S particles, loop 5 becomes ordered in D4 (but not in D4), creating a surface in the 18S particles that is suitable for dimerization across 2-fold axes to form the open procapsid.

The Assembly Pathway
The results discussed above suggest that initially monomers of D associate to create asymmetric dimers similar to D1D2, as seen in the crystal structure of the recombinant D protein. The dimerization process involves either the kinking or unkinking of helix α3, depending on the nature of the unknown assembly naive monomer structure. The next step of assembly is the association of two dimers to make a tetramer. This results in further small conformational changes that inhibit the formation
of infinite helices of D monomers or D,D,D,D dimers. These tetramers then bind to 125 pentamers to create 18S particles. At this stage, helices α1 and α7 of subunit D change their conformation as a result of their interaction with the F protein, thus anchoring the tetramer via subunit D onto a capsid protein F and via subunit D onto a spike protein G. Binding of the D tetramer with the 125 subunit D activates a final conformational switch in which loop 5 of subunit D becomes ordered, while loop 5 in subunit D remains disordered, allowing 12 18S particles to assemble into an icosahedral open procap-sid. Details of these events require further analyses, but the combination of structural and genetic analyses suggest the above as the approximate series of confor-mational switches that occur in φX174 procapsid assem-bly.

A general observation regarding protein structure is that the association of one protein with another, or with a smaller nonprotein ligand, usually increases the order and stability (James and Tawfik, 2003). The most disor-dered D subunit in the crystals of recombinant D is D8, corresponding to D2 and D4 in the procapsid. This would suggest that D8 might be the closest to an assembly naïve structure.

Table 2. Data Collection and Refinement Statistics

<table>
<thead>
<tr>
<th>Data Collection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution limit (Å)</td>
<td>3.3</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>11,430</td>
</tr>
<tr>
<td>Completeness (%)a,b</td>
<td>94.2 (84.4)</td>
</tr>
<tr>
<td>I(0)b</td>
<td>11.2 (2.3)</td>
</tr>
<tr>
<td>Rmerge</td>
<td>16.3 (52.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refinement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rmerge</td>
<td>27.1</td>
</tr>
<tr>
<td>Rfree</td>
<td>30.9</td>
</tr>
<tr>
<td>Rms deviation</td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.009</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>1.4</td>
</tr>
<tr>
<td>Dihedral angles (°)</td>
<td>20.4</td>
</tr>
<tr>
<td>Improper angles (°)</td>
<td>0.85</td>
</tr>
<tr>
<td>Average B factors</td>
<td>22.4</td>
</tr>
</tbody>
</table>

aNumbers in parentheses are for the highest resolution range.
bComplete, I/a,b 11.2 (2.3) mers had associated into tetramers.

of infinite helices of D monomers or D,D,D,D dimers. These tetramers then bind to 125 pentamers to create 18S particles. At this stage, helices α1 and α7 of subunit D change their conformation as a result of their interaction with the F protein, thus anchoring the tetramer via subunit D onto a capsid protein F and via subunit D onto a spike protein G. Binding of the D tetramer with the 125 subunit D activates a final conformational switch in which loop 5 of subunit D becomes ordered, while loop 5 in subunit D remains disordered, allowing 12 18S particles to assemble into an icosahedral open procap-sid. Details of these events require further analyses, but the combination of structural and genetic analyses suggest the above as the approximate series of confor-mational switches that occur in φX174 procapsid assem-bly.

A general observation regarding protein structure is that the association of one protein with another, or with a smaller nonprotein ligand, usually increases the order and stability (James and Tawfik, 2003). The most disor-dered D subunit in the crystals of recombinant D is D8, corresponding to D2 and D4 in the procapsid. This would suggest that D8 might be the closest to an assembly naïve structure.

Experimental Procedures

Protein Expression and Purification

Cloning of the φX174 D protein has been described previously (Burch and Fane, 2000). Recombinant D protein was overexpressed in E. coli BL21(DE3) cells. These cells were grown in LB media containing 100 mg/l ampicillin at 37°C. Overexpression was induced by addition of IPTG (isopropyl-β-d-thiogalactopyranoside) to a final concentration of 1 mM. The cell pellet from 350 ml of cultured cells was resuspended in 23 ml of 20 mM Tris- HCl, pH 8.0. Cells were lysed by sonication (Branson, Sonifier) for a total of 12 min, and the cellular debris removed by centrifugation at 15,000 × g for 20 min. After separation of the pellet and supernatant, 300 μl of 5 M NaCl was added to the supernatant, and the solution stirred for 15 min. Two grams of (NH4)2SO4 were then added, the solution was allowed to change their conformation as a result of their interaction with the F protein, thus anchoring the tetramer via subunit D onto a capsid protein F and via subunit D onto a spike protein G. Binding of the D tetramer with the 125 subunit D activates a final conformational switch in which loop 5 of subunit D becomes ordered, while loop 5 in subunit D remains disordered, allowing 12 18S particles to assemble into an icosahedral open procap-sid. Details of these events require further analyses, but the combination of structural and genetic analyses suggest the above as the approximate series of confor-mational switches that occur in φX174 procapsid assem-bly.

A general observation regarding protein structure is that the association of one protein with another, or with a smaller nonprotein ligand, usually increases the order and stability (James and Tawfik, 2003). The most disor-dered D subunit in the crystals of recombinant D is D8, corresponding to D2 and D4 in the procapsid. This would suggest that D8 might be the closest to an assembly naïve structure.

Experimental Procedures

Protein Expression and Purification

Cloning of the φX174 D protein has been described previously (Burch and Fane, 2000). Recombinant D protein was overexpressed in E. coli BL21(DE3) cells. These cells were grown in LB media containing 100 mg/l ampicillin at 37°C. Overexpression was induced by addition of IPTG (isopropyl-β-d-thiogalactopyranoside) to a final concentration of 1 mM. The cell pellet from 350 ml of cultured cells was resuspended in 23 ml of 20 mM Tris- HCl, pH 8.0. Cells were lysed by sonication (Branson, Sonifier) for a total of 12 min, and the cellular debris removed by centrifugation at 15,000 × g for 20 min. After separation of the pellet and supernatant, 300 μl of 5 M NaCl was added to the supernatant, and the solution stirred for 15 min. Two grams of (NH4)2SO4 were then added, the solution was allowed to change their conformation as a result of their interaction with the F protein, thus anchoring the tetramer via subunit D onto a capsid protein F and via subunit D onto a spike protein G. Binding of the D tetramer with the 125 subunit D activates a final conformational switch in which loop 5 of subunit D becomes ordered, while loop 5 in subunit D remains disordered, allowing 12 18S particles to assemble into an icosahedral open procap-sid. Details of these events require further analyses, but the combination of structural and genetic analyses suggest the above as the approximate series of confor-mational switches that occur in φX174 procapsid assem-bly.

A general observation regarding protein structure is that the association of one protein with another, or with a smaller nonprotein ligand, usually increases the order and stability (James and Tawfik, 2003). The most disor-dered D subunit in the crystals of recombinant D is D8, corresponding to D2 and D4 in the procapsid. This would suggest that D8 might be the closest to an assembly naïve structure.

Experimental Procedures

Protein Expression and Purification

Cloning of the φX174 D protein has been described previously (Burch and Fane, 2000). Recombinant D protein was overexpressed in E. coli BL21(DE3) cells. These cells were grown in LB media containing 100 mg/l ampicillin at 37°C. Overexpression was induced by addition of IPTG (isopropyl-β-d-thiogalactopyranoside) to a final concentration of 1 mM. The cell pellet from 350 ml of cultured cells was resuspended in 23 ml of 20 mM Tris- HCl, pH 8.0. Cells were lysed by sonication (Branson, Sonifier) for a total of 12 min, and the cellular debris removed by centrifugation at 15,000 × g for 20 min. After separation of the pellet and supernatant, 300 μl of 5 M NaCl was added to the supernatant, and the solution stirred for 15 min. Two grams of (NH4)2SO4 were then added, the solution was allowed to change their conformation as a result of their interaction with the F protein, thus anchoring the tetramer via subunit D onto a capsid protein F and via subunit D onto a spike protein G. Binding of the D tetramer with the 125 subunit D activates a final conformational switch in which loop 5 of subunit D becomes ordered, while loop 5 in subunit D remains disordered, allowing 12 18S particles to assemble into an icosahedral open procap-sid. Details of these events require further analyses, but the combination of structural and genetic analyses suggest the above as the approximate series of confor-mational switches that occur in φX174 procapsid assem-bly.

A general observation regarding protein structure is that the association of one protein with another, or with a smaller nonprotein ligand, usually increases the order and stability (James and Tawfik, 2003). The most disor-dered D subunit in the crystals of recombinant D is D8, corresponding to D2 and D4 in the procapsid. This would suggest that D8 might be the closest to an assembly naïve structure.
Conformational Switching by ϕX174 Protein D

Accession Numbers

Coordinates and structure factors have been deposited with the Protein Data Bank (accession number 1TX9).