N-terminal deletions of the øX174 external scaffolding protein affect the timing and fidelity of assembly

Asako Uchiyama, Peter Heiman, Bentley A. Fane

The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
Division of Plant Pathology and Microbiology, Department of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA

Abstract

The first α-helices of Microviridae external scaffolding proteins function as coat protein substrate specificity domains. Mutations in this helix can lengthen the lag phase before progeny production. 5' deletion genes, encoding N-terminal deletion proteins, were constructed on plasmids and in the øX174 genome. Proteins lacking the first seven amino acids were able to rescue a null mutant when expressed from a plasmid. However, the lag phase before progeny production was lengthened. The øX174 mutant with the corresponding genomic gene grew very poorly. The molecular basis of the defective phenotype was complex. External scaffolding protein levels were reduced compared to wild-type and most of the viral coat protein in mutant infected cells appears to be siphoned off the assembly pathway. Second-site suppressors of the growth defects were isolated and appear to act via two different mechanisms. One class of suppressors most likely acts by altering mutant external scaffolding protein expression while the second class of suppressors appears to act on the level of protein–protein interactions.

Introduction

The assembly of viral proteins and nucleic acids into a biologically active virion involves diverse and numerous macromolecular interactions, which are often mediated by scaffolding proteins (Fane and Prevelige, 2003; King and Casjens, 1974). While most viral scaffolding proteins are located inside procapsids, øX174 and some satellite phages also require an external scaffolding protein (Goldstein et al., 1974; Fane et al., 2006). Although both the external and internal scaffolding proteins are normally essential in these dual scaffolding systems, the external scaffolding proteins appear to be more critical for assembly. For example, P4 procapsid-like particles can be assembled in vitro using only the capsid and external scaffolding proteins (Wang et al., 2000), and a øX174 sextuple mutant strain can assemble without the internal protein (Chen et al., 2007).

The øX174 assembly pathway is illustrated in Fig. 1A. The first detectable assembly intermediates are pentamers of the major coat and major spike proteins, the respective 9S and 6S particles. Five internal scaffolding proteins bind to the underside of the 9S particle, a pentamer of coat proteins (Cherwa et al., 2008; Tonegawa and Hayashi, 1970). This induces a conformational change that enables the 9S particle to interact with a pentamer of the major spike protein (6S particle), creating the 125 assembly intermediate (Cherwa et al., 2008). 240 copies of the external scaffolding proteins then arrange twelve 125 particles into procapsids (Dokland et al., 1999; Fane et al., 2006). The external scaffolding protein subunits are not arranged in a quasi-equivalent lattice (Dokland et al., 1999, 1997). Instead the proteins are arranged as two asymmetric dimers (D1D2 and D3D4), per asymmetric unit (Fig. 1B). Each subunit assumes a unique structure to mediate the required local contacts with the coat, neighboring external scaffolding, and major spike proteins.

The results of previous structure–function analyses conducted with chimeric external scaffolding proteins, in which the first α-helix of the øX174 external scaffolding protein was replaced with either helices from the related viruses ø3 or ø4 phage, indicate that this structure acts as a coat protein substrate specificity domain early in the morphogenetic pathway (Burch and Fane, 2000; Uchiyama et al., 2007; Uchiyama and Fane, 2005). The primary sequence of the first α-helices from the ø4, ø3 and øX174 external scaffolding proteins are depicted in Fig. 1C. The sequences of the ø3 and øX174 proteins are highly diverged in this region, which most likely accounts for the inability of the ø3/øX174 protein to recognize the øX174 coat protein (Burch and Fane, 2000). While the ø4/øX174 protein could support assembly, the results of kinetic analyses demonstrated that a higher critical concentration of the chimeric protein was needed to nucleate a step in the assembly pathway, which was reflected in a longer lag phase before the rapid infectious progeny detection (Uchiyama et al., 2007).

With the exception of the first seven amino acids, the first helices of the ø4 and øX174 proteins are relatively conserved. To further
investigate the role of the N-terminal amino acids during assembly, 5′-terminal deletion genes were constructed on plasmids and placed directly in the viral genome. The kinetics of phage growth and the assembly pathway were investigated. Like previously generated results with chimeric external scaffolding proteins, the results of the analyses presented here indicate that the N-terminal amino acids affect the timing of progeny production and morphogenetic fidelity.

Results

N-terminal deletions of the øX174 external scaffolding protein alter the timing of progeny production

N-terminal deleted proteins were initially expressed from plasmids and assayed for the ability to complement a nullD allele. The results of those experiments indicated that the first seven amino acid residues of the protein were not essential for plaque formation. However, the deletion of the first nine amino acid residues resulted in the loss of complementation activity.

A previously characterized phage containing a G4/øX174 external scaffolding protein gene, in which the genetic material encoding the first α-helices of these two related viruses were interchanged, exhibited delayed assembly kinetics (Uchiyama et al., 2007; Uchiyama and Fane, 2005). The lag phase before particle production was lengthened. However, after the lag phase, progeny were rapidly produced at or near wild-type rates. To determine whether deletions in the first α-helix acted in a similar manner, the growth of a nullD mutant was examined in cells expressing the ΔD7, ΔD9, and wild-type proteins (Fig. 2A). In these and all kinetic experiments, infections were synchronized as described in Material and Methods and phage were pre-attached to cells. The lag phase before the appearance of progeny was lengthened in cells expressing the ΔD7 protein (circles) relative to the wild-type control (squares), and the overall yield was lower by an order of magnitude. No progeny were produced in cells expressing the ΔD9 protein (data not shown).

The phenotypes and growth kinetics of the øX174ΔD7 and ΔD9 strains

While the results of the cloned gene complementation tests are suggestive, the expression of proteins from high copy number plasmids leads to a protein pool at the onset of infection, which can shorten the lag phases or otherwise drive and facilitate reactions that may not occur under physiological conditions (Uchiyama et al., 2007; Uchiyama and Fane, 2005). Therefore, 5′ deletion genes were built directly into the øX174 genome. It was possible to build both the ΔD7 and ΔD9 5′ deletion genes without altering the stop codon of the upstream C gene, which overlaps with the first two codons of gene D, or the D protein primary structure after the deletion. However, a missense mutation had to be introduced in the penultimate codon of gene C to construct these strains, which conferred an S→H substitution in the C-terminal amino acid. The øX174ΔD9 strain has an absolute lethal phenotype, only forming plaques in cells expressing the wild-type D protein. The øX174ΔD7 strain was viable in the absence of exogenously expressed D protein at 33 °C but plaques size was very small and plating efficiencies

![Fig. 1.](image-url)
dropped between 2–4 orders of magnitude at 26 °C and 42 °C. Plaque formation at the temperature extremes for both phages, as well as the small plaque øX174ΔD7 phenotype at 33 °C, was efficiently rescued in cells expressing a cloned wild-type gene, demonstrating that the D protein deletions, not the missense mutation in gene C, were both necessary and sufficient to account for the defective phenotypes.

The kinetics of øX174ΔD7 progeny production was analyzed in lysis-deficient cells (Fig. 2B). In these and all kinetic experiments, infections were synchronized as described in Material and methods and phage were pre-attached to cells. The wild-type curve has a short but pronounced lag phase followed by a rapid rise in progeny production (squares). The lag phase in this experiment conducted with wild-type øX174 is considerably shorter than that observed for the nullD mutant complemented with wild-type D protein (Fig. 2A, squares). This most likely reflects differences in host cell physiology, which would be affected by the use of antibiotic media and the expression of a phage protein from a high copy number plasmid. In this and other experiments conducted with the øX174ΔD7 strain, it was difficult to precisely identify a lag phase (circles). While it is possible that the deletion of the first seven amino acids allows slow and constant assembly, the small differences between starting and ending titers most likely obfuscates detecting the lag phase within the curve. No virions were produced in øX174ΔD9 infected even after 40 min of incubation (data not shown).

The differential yields between the wild-type and øX174ΔD7 infections are accentuated when the proteins are expressed from viral genomes compared to the complementation studies, in which the external scaffolding proteins are expressed from the plasmids. Neither the overlap between genes C and D or the RBS for gene D were altered in producing the øX174ΔD7 strain. However substitutions between the RBS and the start codon were introduced. Nucleotide changes in this region are known to affect protein levels in prokaryotic systems (de Smit and van Duin, 1990). To determine whether mutant D protein levels were altered in the øX174ΔD7 strain, relative protein levels were investigated by examining whole cell lysates of infected cells by SDS-PAGE. As can be seen in Fig. 3A, the amount of D protein, relative to other phage proteins, detected in øX174ΔD7 infected cells is lower compared to the wild-type control. To quantify these differences, the gel was analyzed for band intensity and area using NIH ImageJ software and the relative ratios of D protein were determined vis-à-vis proteins F and G. The results of this analysis indicate that the mutant D protein is expressed at approximately 15% of wild-type levels.

Characterization of particles produced in øX174ΔD7 and ΔD9 strains

Although external scaffolding protein levels are reduced in the øX174ΔD7 strain, this reduction does not fully explain the defective phenotype. External scaffolding protein levels are 15% of wild-type, but virion yield is reduced more than two orders of magnitude. To investigate other possible assembly defects, extracts from øX174ΔD7 and wild-type infected cells were generated and analyzed by rate zonal sedimentation. Initially, gradient and centrifugation parameters were designed to investigate particles with S values between 70–114 (Fig. 4A), the region of the gradient in which virions (114 S), procapsids (108 S) and degraded procapsids (70 S) are detected. Unlike the extracts from wild-type infected cells, virions and degraded procapsids were not detected by spectroscopy in mutant extracts, suggesting that a morphogenetic block occurs early in the assembly pathway and/or viral proteins are being siphoned off of the pathway.

To examine the production of the early intermediates with S values less than 50, lysates were again examined by rate-zonal sedimentation. However, after centrifugation, fractions were examined by SDS-PAGE as the small S values of the early assembly intermediates overlap with host cell complexes and large proteins making detection by spectroscopy unreliable. In extracts from øX174ΔD7 infected cells (Fig. 4B) only 95 particles, consisting of coat protein pentamers, were observed. The presence of 95 particles differs from what is typically observed in nullD infected cells, in which assembly is arrested after the formation of the 125S assembly intermediate (Fig. 1), before the first D protein mediated step in the pathway. As expected, very few small assembly intermediates were observed in the wild-type extracts as most structural proteins are incorporated into virions (Cherwa et al., 2008).
The low yield of large particles and the accumulation of a particle that occurs before the first D protein mediated step in that pathway suggest that the deletion proteins may be siphoning off intermediates from the pathway. To examine this possibility, soluble extracts and pellets from \(\varnothing X174 \Delta D7 \) and wild-type infected cells were examined by SDS-PAGE (Fig. 3B). In extracts from mutant infected cells, the ratio of coat protein found in soluble and pellet fractions differs from the wild-type control, in which more coat protein is found in the soluble fraction. To quantify these differences, the gel in Fig. 3B was analyzed for band intensity and area using NIH ImageJ software. The host protein bands labeled NS (Normalization band for Supernatant fraction) and NP (Normalization band for Pellet fraction) were used to normalize for differences that may have arisen during sample preparation. The exact identity of these host cell proteins is unknown. After normalization, the coat protein supernatant:pellet ratios for the wild-type and mutant samples were determined to be 1.4 and 0.6, respectively. Thus, most of the coat protein in mutant infected cells is found in the insoluble fraction. It is unlikely that reduced levels of the mutant external scaffolding protein alone causes coat protein aggregation as the complete absence of external scaffolding proteins leads to the accumulation of the soluble 125\(^*\) intermediate (Cherwa et al., 2008). The coat protein in the soluble fraction most likely represents the unassembled 9S particles observed in Fig. 4B and any virions or defective large particles that may have formed. Since virion production is extremely low, approximately two orders of magnitude below wild-type (Fig. 2B), and large defective particles were not detected in mutant infected cells (Fig. 4A), the contribution of coat protein from these particles is most likely low.

Second site suppressors of the \(\varnothing X174\Delta D7 \) defect map to the coat and external scaffolding protein

Although the \(\varnothing X174\Delta D7 \) temperature and cold-sensitive phenotypes are leaky, putative second site suppressors could be isolated as large plaque formers. Unlike the parental mutant, the putative suppressors plate with efficiencies near 1.0 at the temperature of isolation (Table 1) and plaque size is dramatically increased at 33 °C. Seven genetically distinct suppressors were isolated and appear to fall into two classes. The four members of the first class map between the RBS and start codon of gene D, a region that can also confer amino acid substitutions in the primary structure of protein C. However, the nucleotide change in one of these strains, \(\text{su} \Delta D7 \text{PR3}/\Delta D7 \), is silent in gene C, an AAG codon being changed to AAA. Thus, it is more likely that the suppressors in this region are altering the expression of the gene D. Whole cell lysates of infected cells were examined by SDS-PAGE (Fig. 3A). To quantify differences in relative protein levels, the gel was analyzed for band intensity and area using NIH ImageJ.
Discussion

The kinetics of in vivo bacteriophage production occurs rapidly after an initial lag phase. Two factors contribute to the length of the lag phase: temporal gene expression and the rate-limiting reaction of nucleation complex formation. As there is no temporal gene expression during a øX174 infection, the lag phase seen in synchronized øX174 infections is most likely a function of obtaining the critical concentrations of assembly intermediates and proteins required to drive the formation of nucleation complexes. After nucleation complexes are formed, assembly components add rapidly ensuring that morphogenesis goes to completion (Prevelige et al., 1993). The results of past studies with chimeric external scaffolding and internal scaffolding protein independent strains demonstrate that the length of the lag phase can be correlated to obtaining external scaffolding protein critical concentrations (Chen et al., 2007; Uchiyama et al., 2007; Uchiyama and Fane, 2005). With strains that no longer require the internal scaffolding protein, the over expression of the external scaffolding protein is capable of shortening lag phases, allowing virion formation to occur before programmed cell lysis. With the chimeric external scaffolding strains, lag phases were shortened by the introduction of coat protein substitutions at the three-fold axes of symmetry or by expressing the chimeric protein concurrently from the viral genome and a plasmid.

Table 1

<table>
<thead>
<tr>
<th>Strain</th>
<th>26 °C</th>
<th>33 °C</th>
<th>42 °C</th>
<th>Suppressor location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type øX174</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>øX174AD7</td>
<td>10⁻³</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>su(AD7)PR-1/AD7</td>
<td>0.2</td>
<td>1.0</td>
<td>1.0</td>
<td>Nucleotide 387 T→C-G</td>
</tr>
<tr>
<td>su(AD7)PR-2/AD7</td>
<td>0.2</td>
<td>0.8</td>
<td>1.0</td>
<td>Nucleotide 384 G→T</td>
</tr>
<tr>
<td>su(AD7)PR-3/AD7</td>
<td>0.1</td>
<td>0.9</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>su(AD7)PR-4/AD7</td>
<td>0.04</td>
<td>1.0</td>
<td>0.9</td>
<td>Nucleotide 387 T→C-T</td>
</tr>
<tr>
<td>su(AD7)F144AD7</td>
<td>0.4</td>
<td>0.5</td>
<td>1.0</td>
<td>Coat protein a. 144 T→A</td>
</tr>
<tr>
<td>su(AD7)F238AD7</td>
<td>0.4</td>
<td>1.0</td>
<td>10⁻³</td>
<td>Coat protein a. 238 M→V</td>
</tr>
<tr>
<td>su(AD7)D111AD7</td>
<td>0.6</td>
<td>1.0</td>
<td>0.8</td>
<td>D protein a. a. 111 V→L</td>
</tr>
</tbody>
</table>

a Efficiency of plating is defined as the assay titer most permissive titer.

b Suppressor nomenclature: PR designates "putative regulatory," and is used for those suppressors mapping between the RBS and start codon of the 5' deletion D gene. In those cases where the original nucleotide was changed in creating the Nde 1 site, three nucleotides are reported, the wild-type nucleotide, the change to create the restriction site, and the change that resulted in the suppressing phenotype. Suppressors within the coat and external scaffolding proteins are distinguished with the letter, D or F for external scaffolding or coat protein, followed by the altered amino acid in the primary structure. Thus, F144 indicates a mutation in amino acid 144 of the coat protein.

software and the relative densities of D protein were determined vis-à-vis proteins F and G. Mutant D protein levels are higher in the suppressor strains but still fall below wild-type levels. For the suppressor strains, the amount of detectable D protein ranged from approximately 25–35% of wild-type levels. The level in the parental strain was approximately 15%. Thus, the suppressors may increase D protein levels by a factor of 2.

Members of the second class of suppressors are located in the coat and external scaffolding protein (Table 1; Fig. 1B). To verify the identity of the suppressors, recombination rescue experiments were performed. A wild-type and a suppressor coat protein gene were isolated by TA cloning. Cells harboring these clones were then infected with øX174AD7 at 33 °C and the resulting progeny were assayed for the ability to grow at 26 °C, a restrictive temperature. The restrictive plating frequency for progeny propagated in the host carrying the suppressor gene was 0.24, a value three orders of magnitude higher than that obtained from the progeny propagated in cells carrying the wild-type backgound. Alone, this mutation confers no detectable phenotype.

Members of the second class of suppressors were located in the coat and external scaffolding protein (Table 1; Fig. 1B). To verify the identity of the suppressors, recombination rescue experiments were performed. A wild-type and a suppressor coat protein gene were isolated by TA cloning. Cells harboring these clones were then infected with øX174AD7 at 33 °C and the resulting progeny were assayed for the ability to grow at 26 °C, a restrictive temperature. The restrictive plating frequency for progeny propagated in the host carrying the suppressor gene was 0.24, a value three orders of magnitude higher than that obtained from the progeny propagated in cells carrying the wild-type backgound. Alone, this mutation confers no detectable phenotype.

Second-site suppressor strains, which relieved the poor growth phenotype of the øX174AD7 strain were identified. Although multiple stocks were used and most suppressors were independently isolated more than once, the suppressors of the chimeric protein, primarily located in a large α-helix in the viral coat protein, were not represented in this new pool of mutations. Alterations in this coat protein helix may be required to interact with the altered amino acid residues found in the chimeric strain (Uchiyama and Fane, 2005; Uchiyama et al., 2007). However, this may not be a viable mechanism of suppression if the N-terminal region of the helix is altogether missing.

The deletion proteins were also expressed from the viral genome. The molecular basis of the øX174AD7mutant phenotype is complex. Mutant protein levels are lower than wild-type, which could affect procapsid nucleation, and the protein appears to remove assembly intermediates from the productive pathway. Removal is not a function of lower external scaffolding protein levels as the complete absence of external scaffolding proteins leads to the accumulation of the soluble 125S intermediate (Cherwa et al., 2008). The 125S particle is the last intermediate before the first D protein mediated step and occurs after the formation of the 9S particle, which was detected in mutant infected cells. Thus, it is most likely that 125S particles are being removed from the pathway in a reaction that competes with procapsid formation. In vivo kinetics experiments only measure the production of infectious progeny, not the production of off-pathway aberrant structures, which can be detected by in vitro experiments (Parker et al., 1998; Stray et al., 2005). Thus, it is not possible to determine whether possible off-pathway reactions occur at the same rate as productive procapsid formation. Correlations between increased in vitro assembly rates and the production of aberrant off pathway particles have been noted in the P22 system (Parker et al., 1998).

Second-site suppressor strains, which relieved the poor growth phenotype of the øX174AD7 strain were identified. Although multiple stocks were used and most suppressors were independently isolated more than once, the suppressors of the chimeric protein, primarily located in a large α-helix in the viral coat protein, were not represented in this new pool of mutations. Alterations in this coat protein helix may be required to interact with the altered amino acid residues found in the chimeric strain (Uchiyama and Fane, 2005; Uchiyama et al., 2007). However, this may not be a viable mechanism of suppression if the N-terminal region of the helix is altogether missing.

The suppressors of the N-terminal deletion protein appear to fall into two classes. Members in the first class are located between the RBS and the start codon of the 5' deletion gene. Changes in these regions are known to affect the efficiency of prokaryotic translation (de Smit and van Duin, 1990). Mutant D protein levels produced by suppressor strains appear to be higher parental strain, but still fall below wild-type levels. The growth curves of these suppressor strains resemble wild-type øX174 curves. The increased level of external scaffolding protein could elevate the number of productive nucleation events and increase yields to a level facilitating the identification of a distinct lag phase. However, yields are still reduced by one order of magnitude, suggesting that other assembly defects, which may still involve nucleation, are occurring, which is consistent with the pleotropic nature of the mutant.
The second class of suppressors may be acting on the level of protein–protein interactions. As can be seen in Fig. 1B, the suppressing amino acids located in the external scaffolding protein reside in the coat-external scaffolding protein interface. In the atomic structure of the procapsid (Dokland et al., 1999, 1997), this residue in the D1 and D2 subunits makes direct contact with coat protein residues 152 and 144, respectively. Residue 144 was also identified as a suppressor. The coat protein suppressor located at residue 238 makes direct contact with the internal scaffolding protein. Coat-internal scaffolding protein interactions have been shown to influence subsequent interactions with the external scaffolding protein, conferring resistance to dominant negative external scaffolding mutations (Cherwa et al., 2008).

These interface suppressors could act by lowering the critical concentration of the deletion proteins required for nucleation, which would in turn elevate yields and facilitate lag phase detection. Alternatively, the suppressors could prevent the removal of assembly intermediates from the pathway. These two mechanisms of suppression are not mutually exclusive phenomena. By lowering the critical concentration required for proper procapsid nucleation, less material is available for an off pathway reaction. Similarly, blocking an aggregation pathway would elevate the scaffolding protein and intermediate levels available for productive assembly.

Materials and methods

Phage plating, media, buffers, stock preparation, generation of single stranded (ss) DNA, replicative form (RF) DNA, DNA isolation, and rate zonal sedimentation and protein electrophoresis

The reagents, media, buffers, and protocols have been previously described (Fane and Hayashi, 1991). Rate zonal sedimentation and protein electrophoresis protocols are identical to those previously published (Uchiyama and Fane, 2005).

Bacterial strains and plasmids

The Escherichia coli strains C122 (supB) and BAF30 (recA) have been described previously (Fane and Hayashi, 1991; Burch et al., 1999). The C900 strain contains the host slyD mutation, which confers resistance to E protein-mediated lysis (Roof et al., 1994), were grown to a concentration 1 × 10^10 cells/ml in TK media (1.0% tryptone, 0.5% KCl). Cells were washed twice with HBF buffer (Fane and Hayashi, 1991) before being resuspended in HBF buffer with 10 mM MgCl2 and 5.0 mM CaCl2. 0.9 ml of cells were mixed with 0.1 ml phage at a concentration of 1.0 × 10^7 PFU/ml. Mixture were incubated at 37 °C to allow phage attachment. Cells with attached phage were concentrated by centrifugation. At t = 0, pellets were resuspended in 1.0 ml pre-warmed TK media at 33 °C. For time points, 50 μl aliquots were removed and placed into 0.5 ml iced CHCl3-saturated HFB containing 2.0 mg/ml hen egg white lysozyme.

Kinetic experiments (viral growth curves)

C900 cells, containing the host slyD mutation, which confers resistance to E protein-mediated lysis (Roof et al., 1994), were grown to a concentration 1 × 10^10 cells/ml in TK media (1.0% tryptone, 0.5% KCl). Cells were washed twice with HBF buffer (Fane and Hayashi, 1991) before being resuspended in HBF buffer with 10 mM MgCl2 and 5.0 mM CaCl2. 0.9 ml of cells were mixed with 0.1 ml phage at a concentration of 1.0 × 10^10 PFU/ml. Mixture were incubated at 37 °C to allow phage attachment. Cells with attached phage were concentrated by centrifugation. At t = 0, pellets were resuspended in 1.0 ml pre-warmed TK media at 33 °C. For time points, 50 μl aliquots were removed and placed into 0.5 ml iced CHCl3-saturated HFB containing 2.0 mg/ml hen egg white lysozyme.

Acknowledgments

The authors thank James Cherwa for discussion. This research was supported by National Science Foundation grant MCB 054297 to B.A.F.

References

