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Reintroduction efforts require knowledge of how many animals are needed for successful establishment.

Population viability analysis can be used to predict trajectories of introduced populations and tree squirrels

provide an ideal model system to investigate this challenge. Conservation action is needed because more than

80% of species of tree squirrels are of precarious conservation status in some portion of their range. We

combined data from closely related species of tree squirrels and used VORTEX to determine how many squirrels

are needed to successfully establish populations of 6 species (Sciurus aberti, S. carolinensis, S. niger, S.
granatensis, S. vulgaris, and Tamiasciurus hudsonicus). We ran multiple simulations to account for between-

patch differences in breeding success (resource availability) and variation between years in different habitats. In

the best-case scenarios, populations could be successfully established with fewer than 35 individuals for all

species and as few as 15 for a subset of species. Empirical evidence from introductions of tree squirrels supports

our simulation results, with 93% of populations of greater than 10 squirrels surviving more than 50 years. With

relatively few individuals needed for establishing new squirrel populations, reintroductions are feasible and

useful as a buffer for imperiled species.
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A fundamental concern of conservation biologists is the

point at which a given population is at risk of extinction

(Lacy 1992; Morris and Doak 2002; Shaffer 1981; Soulé

1987). Stochastic risks make small populations highly sus-

ceptible to extinction (Primack 2000; Pullin 2002); therefore, it

is critical to assess the possibility of establishing new popula-

tions to buffer stochastic events or to increase the chance of

recovery of species in decline (IUCN 1998; Morris 1986). In

these reintroductions we are forced to speculate how many

individuals are needed for successful establishment. The num-

ber of individuals needed can be examined through population

viability analysis on small hypothetical populations established

in large novel environments, simulating an introduction

(Bustamante 1996; Howells and Edward-Jones 1997; Marshall

and Edward-Jones 1998; South et al. 2000).

In small populations, where every animal is needed for

persistence, experimentation is ill advised and theoretical

techniques such as population viability analysis become even

more useful. Population viability analysis can be repeated by

other interested parties (Akçakaya and Sjögren-Gulve 2000),

leaving results and conclusions open for multiple groups to

discover and thereby reduce disagreement in decision making.

Care should be taken with estimates because often very little

is known about a species. However, useful and meaningful

results can be generated by assuring the complexity of the

question is on the same level as that of the data available

(Caswell 2001).

Reintroductions create new populations that can serve as a

buffer to extreme events that may cause the extinction of a

species of a few or only a single population. Areas where

a population has been extirpated and other habitable areas are

candidates for such reintroductions, provided that disturbances

have been removed and the area suitably recovered (IUCN

1998). Often populations of sufficient size to minimize risk of

extinction due to demographic or environmental stochasticity

are too large for a single reserve and require multiple sites and

management of metapopulations to conserve species (Soulé

1987). Reintroduction is a valuable tool in establishing

additional populations. With multiple small populations,

species as a whole can have a greater chance at withstanding
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environmental and demographic stochasticity, maintaining

genetic variation through a large metapopulation that can

withstand loss of individual populations to catastrophes and

disturbance (Brown and Kodric-Brown 1977).

Arboreal rodents are excellent indicators of ecosystem health

(Carey 2000; Steele and Koprowski 2001) and the same

population processes that affect many other species also affect

tree squirrel populations, making them an excellent model

system for many studies in behavior, population ecology, and

conservation biology (Steele and Koprowski 2001). Therefore,

techniques generated in our study may be applicable to other

species of precarious status. Furthermore, more than 80% of

species of tree squirrels are in precarious conservation status in

some portion of their range (Koprowski 2005a), indicating

a need to examine viability of tree squirrel populations and

feasibility of reintroductions to aid conservation efforts. Tree

squirrels require mature forests in temperate and tropical

regions (Gurnell 1987). Disturbance in old-growth forests is

accelerated by anthropogenic forces, increased degradation,

and fragmentation, and results in mortality of tree squirrels and

reduced population sizes (Bendell 1974; DeBano et al. 1998;

Hakala et al. 1971; Harris 1984; Koprowski 2005a, 2005b;

Pyne 1982).

We used life-history data gleaned from the literature as input

for a population viability model in order to examine the ability

of introduced populations of tree squirrels to persist despite

typical levels of environmental and demographic variability.

We generated viable starting population estimates using these

data and support our results with empirical evidence from

actual introductions of tree squirrels.

MATERIALS AND METHODS

Life-history data.—We gathered life-history parameters

(Table 1), including age of 1st breeding, maximum breeding

age, sex ratio, litter size, female breeding percentage per breeding

season, and mortality rates, from published sources for 6 species:

Abert’s squirrels (Sciurus aberti), eastern gray squirrels (S.
carolinensis), red-tailed squirrels (S. granatensis), eastern fox

squirrels (S. niger), Eurasian red squirrels (S. vulgaris), and red

squirrels (Tamiasciurus hudsonicus). Species of tree squirrels

considered at risk are poorly studied (Koprowski 2005a), so we

combined data from multiple species to fill in the few gaps in

life history. Reproductive output does not vary across species

in the genus Sciurus (Heaney 1984), thereby allowing us to

average across species with minimal error. We used the mean

value for the 5 species of Sciurus to substitute for the few

instances where values were unknown or uncertain (Table 1):

S. aberti (mortality, breeding percentage), S. niger (juvenile

mortality), and S. granatensis (breeding percentage). The life

histories of the 5 species of Sciurus are remarkably similar. The

notable exception, T. hudsonicus, is territorial in parts of its range

(Steele 1998) but still maintains life-history tactics similar to

those of other tree squirrels. We compiled sufficient information

for T. hudsonicus such that we did not need to use across-species

averages for any life-history parameters.

Simulations and scenarios.—We used VORTEX version

8.42 (Lacy 1993), to calculate viable starting population

estimates. VORTEX is an individual-based Monte Carlo

simulation package designed for population viability analysis

of mammalian systems (Lacy 2000).

TABLE 1.—Summary of parameter estimates for VORTEX simulations of tree squirrel introductions. Worst-case scenario is a compilation of the

lowest survival and reproductive output values across the 6 species.a

Parameter

Sciurus

aberti S. carolinensis S. granatensis S. niger S. vulgaris

Tamiasciurus

hudsonicus

Worst-case

scenario

First breeding (years) 1 1 1 1 1 1 1

% females breeding (per season)

Optimistic 90b 92 62b 65 90 77

Average 62b 70 70b 55 90 85 25

Pessimistic 62b 70 62b 55 90 77

Breedings (per year)

Optimistic 2 2 3 2 2 2

Average 2 2 2 2 2 1 1

Pessimistic 1 1 2 1 1 1

Litter size (per female)

Optimistic 3.5 3.2 2 3.1 2.5 3.7

Average 3.4 2.8 2.2 2.8 2.2 4 2

Pessimistic 3.4 2.8 2 2.8 2.2 3.6

Mortality 0/1þ years

Female 60/28b 60/33.8 60/48 60b/28 62/32 67.8/36 75/58

Male 60/28b 60/33.8 60/48 60b/28 62/32 73/30 75/58

a Sources: Allen 1943; Allen 1982; Barkalow et al. 1970; Berteaux and Boutin 2000; Boutin and Larsen 1993; Brown 1984; Brown and Yeager 1945; Chesemore 1975; Dolbeer 1973;

Emmons 1979; Farentinos 1972; Ferron and Prescott 1977; Glanz et al. 1982; Goodrum 1961; Gurnell 1994; Halvorson and Engeman 1983; Harnishfeger et al. 1978; Heaney and

Thorington 1978; Herkert 1985; Jameson and Peeters 1988; Keith 1965; Kemp and Keith 1970; Koprowski 1985, 1994a, 1994b; Larsen and Boutin 1994; Layne 1954; Longley 1963;

McAdam and Boutin 2003; McCloskey and Vohs 1971; Nash and Seaman 1977; Nitikman 1985; Shuttleworth 1999; Steele 1998; Stephenson and Brown 1980; Stuart-Smith and Boutin

1995; Thompson 1978; United States Fish and Wildlife Service 1993; Uphoff 1990; Verboom and Van Apeldoorn 1990; Wauters and Dhondt 1989, 1990, 1995; Whitehead 1976; Wood

1967.
b Sciurus mean value used.
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We made several necessary, biologically based assumptions

to simplify simulations, while still allowing us to mimic most

cases of tree squirrel introductions. The assumptions were:

extinction occurred when only 1 sex remained; a single popu-

lation without immigration was modeled to mimic decreased

demographic linkages; squirrels reproduced until death; a pro-

miscuous mating system, modeled as a polygynous system

without monopolization of mates; no explicit addition of in-

breeding depression to our models; no catastrophic events; and

no density-dependent reproduction. An effect of inbreeding

depression on survival and reproduction was not apparent in

Eurasian red squirrels within recently fragmented populations

of less than 30 individuals (Wauters et al. 1994), and no

data exist on the effect of inbreeding specifically for tree

squirrels. Therefore, we used a more general approach to

examine theoretical effects of inbreeding (see ‘‘Discussion’’).
Clearly, catastrophes can have significant impacts on pop-

ulation persistence (Lande 1993). However, catastrophic

events were not included in our simulations because our efforts

were to assess the potential of introduced populations to

establish from a few individuals despite typical ranges of

environmental and demographic stochasticity. Eastern gray and

Eurasian red squirrel populations only show density-dependent

reproduction at high density, such as populations in highly

fragmented environments (Sanderson and Berry 1973; Wauters

and Lens 1995). Introductions for conservation purposes

should occur in contiguous large areas that can maintain

sustained growth rather than small woodlots (IUCN 1998), so

a population large enough to realize negative density-

dependence would be considered a successful introduction.

Positive density-dependence (Allee effects) seems unlikely

because females rear young individually and male squirrels

maximize their chances of finding a receptive female, even

expanding their home range beyond its already increased size

during the breeding season when females are sparse (Steele and

Koprowski 2001). Therefore, we did not model density-

dependent reproduction.

Yearly changes in environmental variability do affect life-

history parameters such as reproduction and mortality (Gurnell

1987). Such changes are incorporated in the stochastic nature

of the model. However, adults can use other food sources in

times of food shortage (Barkalow et al. 1970; Koprowski 1991)

but may suppress reproduction, indicating bad years for re-

production may not necessarily be bad years for survival.

Therefore, we did not model a direct link between survival and

reproduction in our analyses. Large differences in juvenile

recruitment are due to year-to-year variation within habitats

that is incorporated through demographic and environmental

variability in the stochastic model. However, overall resource

availability (due to habitat quality) would result in different

baseline parameter means for recruitment variables so we chose

to model different scenarios to examine these factors. We used

constant values for mortality, sex ratio, and breeding age values

and generated 3 different reproductive scenarios using our

compilation of life-history data: pessimistic, average, and

optimistic, from the minimum study average, mean value

across studies, and maximum study average (Table 1), re-

flecting baseline resource availability differences between

potential habitats.

We defined a successful introduction as the smallest starting

population that has less than 1% chance of extinction (a 99%

chance of survival) over the next 100 years, similar to a mini-

mum viable population (Shaffer 1981). We used this definition

to assign a binary score, viable or not, to different starting

populations. We ran our population simulations for a 100-year

period and repeated each set of initial conditions 500 times

(Harris et al. 1987). We started initial populations with a stable

age distribution of 10 squirrels and increased the starting

population incrementally by 10 until 99% population persis-

tence was reached. Then we reported a successful starting

population as the population between the 1st trial with suc-

cessful establishment (according to the above definition) and

the preceding one. We generated minimum population for

establishment estimates for 3 different scenarios (pessimistic,

average, and optimistic reproduction) for each of the 6 squirrel

species.

In addition to baseline resource differences, some potential

habitats for introduction may have more variability between

years, such as in edge habitat. To analyze how this affects

viable starting population numbers we determined variation,

representing variability in percentage of females breeding, litter

size, and mortality from the literature. We gathered standard

deviations from within studies (which also would include

sampling error), to characterize the representative standard

deviation for a particular system, and generated from these

values a set of low and high standard deviations representing

typical combinations of demographic and environmental

stochasticity (Table 2). We ran each breeding scenario

(pessimistic, average, and optimistic reproduction) at low and

high variability, for a total of 6 starting population estimates for

each species.

We ran an additional general test to evaluate the impact of

a novel area on released individuals. Introduced squirrels

would have to adjust to their new surroundings and during

this initial learning period may be subject to higher rates of

mortality and reduced fecundity. For this simulation we

modeled the worst-case situation for survival and breeding by

taking some of the lowest parameter estimates across species

(Table 1) and combining them to see how many individuals

would be needed to overcome an initial 2 years of extremely

poor population performance. We ran 500 simulations at our

high estimates of environmental and demographic stochasticity

for starting populations of 0–200 squirrels by 20 squirrel

TABLE 2.—Yearly standard deviation values used as VORTEX

parameters for habitat variability simulations of tree squirrel

introductions (see references in Table 1).

Parameter Low High

Litter size 0.125 0.25

Female breeding % 5 10

Adult mortality % 4 7

Juvenile mortality % 5 10
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increments and report the number of trials above 20 squirrels

after 2 years.

Empirical data.—To assess the potential application of our

estimates, we examined empirical evidence in the literature

describing natural situations that were similar to those in our

models (human introduction of squirrels into plentiful habitat).

This situation most closely simulates introductions of non-

native species because there are no long-term examples of

squirrel reintroductions into forested ecosystems. We found

very few introductions older than 100 years so we collected

records of tree squirrel introductions older than 50 years,

worldwide, to compare to our modeling results (Bertolino and

Genovesi 2003; Cowan and Guiget 1965; Davis and Brown

1988; Huey 1964; Millar 1980; Payne 1976; Seebeck 1984;

Verts and Carraway 1998; Yensen and Valdés-Alarcón 1999).

By 50 years, the population will have gone through multiple

generations and will have overcome many of the initial

demographic challenges faced by introduced populations.

RESULTS

Low habitat variability simulations.—Low habitat variabil-

ity required only a few tens of individuals to establish a viable

population in a novel habitat with optimistic reproduction

(Fig. 1A). Only S. vulgaris required a starting population . 25

individuals. In the best scenarios, most species needed only

a one-time introduction of 15 individuals to start a population

that would persist for 100 years. As reproductive output

decreased, estimates of successful starting populations in-

creased, but large increases were only evidenced for a few

species. S. aberti, S. granatensis, and T. hudsonicus required

increases of only about 10 squirrels in starting populations

when undergoing average reproduction and increases of fewer

than 40 squirrels with pessimistic breeding scenarios (Fig. 1A).

S. carolinensis and S. vulgaris required increases of more than

50 squirrels in the size of starting populations to produce viable

populations from optimistic to pessimistic breeding scenarios.

S. niger required large increases of 40 and 150 squirrels from

optimistic to average and optimistic to pessimistic reproductive

scenarios, respectively.

High habitat variability simulations.—High habitat vari-

ability increased required starting population sizes for viable

reintroduction, but again successful reintroductions resulted

from only a few squirrels with optimistic breeding scenarios

(Fig. 1B). For the most optimistic breeding scenarios, only

S. vulgaris required more than 35 squirrels in the starting

population to yield a successful introduced population. For

S. aberti, S. granatensis, and T. hudsonicus, even under pes-

simistic breeding scenarios at high habitat variability, we pre-

dicted that a population could be successfully established with

an introduction of fewer than 100 individuals, and in most

cases with fewer individuals. S. carolinensis, S. niger, and S.
vulgaris required large (between 150 and 200 squirrels) starting

populations for success under pessimistic reproductive scenar-

ios. Under the poorest conditions, populations quickly declined

and more than 160 squirrels were needed to have a .95%

chance of a population being above 20 squirrels after 2 years

(Fig. 2).

Empirical results.—We found 25 cases of tree squirrel

introductions that occurred more than 50 years ago for S.
carolinensis, S. niger, S. aberti, and T. hudsonicus (Table 3).

Initial population sizes ranged from 4 to 111 squirrels (�X ¼
30.7, SD ¼ 33.7) at locations in Canada, the United States,

Mexico, Italy, Australia, and South Africa. Twenty-one (84%)

of the introduced populations currently persist, whereas 13

(93%) of 14 introductions with more than 10 squirrels still

persist. The smallest populations that persist stem from 4 indi-

viduals of S. carolinensis introduced to Turin, Italy (Bertolino

and Genovesi 2003), and 4 individuals of S. aberti introduced

to the Granite Dells of Arizona (Davis and Brown 1988). A

population founded from a single pair of S. carolinensis went

extinct after 36 years in Victoria, Australia (Seebeck 1984).

DISCUSSION

Our findings suggest that tree squirrels can overcome typical

ranges of environmental and demographic stochasticity and

FIG. 1.—Simulated minimum starting populations of tree squirrels

(Sciurus and Tamiasciurus) required for successful introduction at A)

low and B) high resource variability for introduction into novel

environments. Estimates are generated from VORTEX simulations.

Reproduction values are from a literature review creating pessimistic

(dark gray bars), average (light gray bars), and optimistic (white bars)

scenarios (see Table 1).
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establish populations in novel habitats through introduction of

relatively few squirrels under many achievable levels of habitat

quality and demographic scenarios. Our use of generic values

in 4 instances may reduce the accuracy of our results, but our

pattern of small numbers of individuals required for successful

introduction likely still holds. When more detailed data become

available, more specific estimates can be generated. Habitat-

specific information and spatially explicit processes can also be

incorporated into site-specific models to improve specific

estimates. For tree squirrel conservation in the present, our

results are practical and likely indicative of widespread

patterns.

The ability of most species in our models to establish from

low numbers suggests managers should strive to conserve even

the smallest populations because there is a strong likelihood

that populations can recover with alleviation or amelioration of

factors responsible for their decline. Small populations can

persist, may recover from low numbers, and should not be

immediately and universally discounted. We strongly caution

that our numbers not be used as conservation targets because

small populations face increased levels of the multiple threats

of genetic, environmental, and demographic stochasticity and

catastrophes that can lead to extinction (Shaffer 1981).

Although under ideal conditions a few animals can establish

a population of tree squirrels, if conditions are not met,

reintroductions may have a poor chance for success. Under the

poorest conditions, possibly following an introduction, squirrel

populations will decline. Increased environmental stochasticity

accelerates extinction (Alvarez 2001); therefore, areas for

reintroduction should be assessed for their ability to provide

not only a large, but also a stable amount of food (Fornasari

et al. 1997). Reintroduced individuals have to learn to cope in

a new environment, and they may be subjected to increased

mortality and lower reproduction in the 1st years after

reintroduction. However, after a soft release, introduced tree

squirrels exhibited a high degree of site fidelity and quickly

acclimated to their new surroundings after a month-long period

of higher mortality (Bendel and Therres 1994). Careful

planning before the reintroduction, management (such as

supplemental feeders and soft releases) during the initial few

years of uncertainty, and reintroductions using translocation of

wild stock, which are preferred over captive-bred populations

(IUCN 1998), can minimize the chance repeated introductions

will be needed to achieve a viable population. However, the

possibility of catastrophes and unknown habitat quality or

needs for a species may lessen chances for success.

Despite lack of evidence from squirrel populations suggest-

ing significant effects of inbreeding depression (Wauters et al.

1994), populations that experience severe bottlenecks may be

affected by inbreeding depression (Lynch et al. 1995).

Mammals average 33% higher juvenile mortality due to

inbreeding (Ralls et al. 1988). Although we did not explicitly

include inbreeding in our model, one can use our model to

predict its effects. Inbreeding depression is mostly realized in

recruitment (Keller and Waller 2002); therefore, by using

decreased reproductive success as a proxy for inbreeding

depression (i.e., move to average from optimistic scenario), the

potential change in the number of individuals required for

successful reintroduction due to inbreeding depression can be

estimated. Conservation efforts should consider the potential

for inbreeding, be prepared for translocation of animals to

maintain genetic diversity (Keller and Waller 2002), and

maximize genetic variation in the founder population.

Although failures may not be as widely reported as

successes, the many successful introductions and small

numbers used in those introductions support our results and

illustrate that tree squirrels can quickly adapt to new areas after

release. As few as 4 individuals have been introduced into

a new area and survived for more than 50 years (Bertolino and

Genovesi 2003; Davis and Brown 1988), introduced popula-

tions of Abert’s squirrels have thrived and dispersed to nearby

habitat patches (Lomolino et al. 1989), and despite efforts to

remove eastern gray squirrels in Italy, many of these

populations remain extant (Bertolino and Genovesi 2003).

Many introduced populations are robust despite establishing

from only a few founders, providing long-term hope for

reintroduction efforts, which are becoming more common.

Since 1978 the Delmarva fox squirrel (Sciurus niger cinereus)

has been reintroduced (mean introduction size ¼ 18.3, range 5–

42) to Maryland, where 10 of 11 introduced populations persist

(Therres and Willey 2002). Small reintroductions of Eurasian

red squirrels persist in Belgium (Swinnen 1998; Wauters et al.

1997), the United Kingdom (Bertram and Moltu 1986), and

Italy (Fornasari et al. 1997). Reintroductions of Sciurus lis
into 60-ha (13 squirrels between 1984 and 1985) and 20-ha

FIG. 2.—Proportion of populations with more than 20 squirrels after

2 years from different starting populations, generated from a VORTEX

population viability analysis simulation. Life-history parameters were

determined from one of the lowest reported parameter values for

a single year for tree squirrels. Dashed line represents 95% cutoff.
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(10 squirrels in 1986) city parks in Japan were unsuccessful,

but an introduction into an 87-ha city park (5 squirrels in 1988)

still persists (Yatake 2001).

What allows tree squirrels to establish from a small founding

population? Gurnell (1987), in a review of tree squirrels, found

that female tree squirrels are characterized by high reproductive

output of 2 or 3 litters per year, litter sizes up to 8, and that each

sex can reproduce at 1 year of age. Although survival to the

2nd year of life can be low (15%), adult survival is high (50–

80%—Gurnell 1987; Heaney 1984), and in years with a good

food supply, juvenile survival can increase to 60% and adult

survival to 100% (Gurnell 1987). The high biotic potential of

tree squirrels and lack of density-dependent reproduction at low

population densities allows even a small population to increase

during a year of good or modest food. Tree squirrels possess

good dispersal capability, can colonize and use novel habitats,

and can make their own nests (Gurnell 1987). Furthermore,

adult tree squirrels eat many different foods, permitting

persistence in a variety of forest types and enabling survival

through poor seed years (Gurnell 1987; Steele and Koprowski

2001).

Additional modeling efforts have demonstrated that tens of

animals are needed for successful reintroduction, not the larger

numbers previously thought (Howells and Edward-Jones 1997;

South et al. 2000). Reintroduction seems plausible for squirrel

populations where a small founding population can be used to

create additional populations to buffer against catastrophes

such as hurricanes (Holler et al. 1989), disease (Rushton et al.

2000), wildfire (Koprowski et al. 2006), or insect infestations

(Koprowski et al. 2005). Although reintroduction of tree

squirrels is a practical use of the limited money available for

conservation, ultimately, conservation of tree squirrels will

depend on successful management of multiple reserves and

maintenance of mature, connected old-growth forest that tree

squirrels rely on for their survival.
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