Mineral mesopore effects on nitrogenous organic matter adsorption

Andrew R. Zimmermana,*, Keith W. Goyneb, Jon Choroverb, Sridhar Komarnenic, Susan L. Brantleya

aDepartment of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
bDepartment of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ 85721, USA
cDepartment of Crop and Soil Sciences, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA

Received 15 April 2003; accepted 14 October 2003
(returned to author for revision 22 July 2003)

Abstract

The “mesopore protection hypothesis” [Chem. Geol. 114 (1994) 347; Geochim. Cosmochim. Acta 58 (1994) 1271] proposes that organic matter (OM) may be protected from enzymatic degradation by sequestration within mineral mesopores (2–50 nm diameter). This hypothesis is a leading, though controversial, theory in explaining both the preservation of some extremely labile OM compounds and observed correlations between OM content and mineral surface area in soils and sediments. To test this idea, we carried out batch experiments in aqueous suspensions to examine the adsorption/desorption of amino acid monomers and polymers onto fabricated mesoporous and nonporous alumina and silica. Each mineral pair was of similar surface chemistry and differed only in the presence or absence of intraparticle mesoporosity. All amino acid monomers and polymers smaller than about one-half the pore diameter exhibited significantly greater surface area-normalized adsorption to mesoporous alumina (8.2 nm mean pore diameter) and silica (3.4 nm mean pore diameter) compared to nonporous mineral analogues. Proteins larger than the mesopores exhibited greater adsorption to the nonporous phases indicating their exclusion from internal surfaces of mesoporous minerals. Greater desorption hysteresis for mesopore-sorbed OM indicates that desorption from pores was inhibited. The adsorption/desorption data, as well as Langmuir-Freundlich modeling and adsorption affinity distributions, suggest that capillary condensation, a ‘pore-filling’ mechanism, may explain the experimental observations. These results provide a potential mechanism for the selective sequestration and preservation of sedimentary OM as well as organic contaminants.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Organic matter (OM)–mineral interactions are of central importance in explaining such diverse phenomena as sequestration of pollutants in soils and sediments (Luthy et al., 1997), turnover of natural soil organic carbon (Torn et al., 1997), and preservation of organic carbon in coastal and marine sediments (Mayer, 1994b, 1999). Upon release from biota (i.e., plants, algae and microbes), biomolecules may be sequestered within soils and sediments or may remain entrained in solution, depending on their affinity for the solid and aqueous phases. Near-surface carbon sinks are transient in nature, and much of this biomolecular OM is degraded by microorganisms to humic substances and CO\textsubscript{2} (Zibilske, 1994; Moore, 1997). Although most biomolecular OM is inherently labile, some portion of it is preserved in
soils and sediments and remains apparently unavailable to microbial decomposition processes (Hedges and Keil, 1995; Luthy et al., 1997). The factors that govern the amount and nature of OM sequestered in this manner are of fundamental importance to our understanding of the migration, bioavailability and remediation of organic contaminants, global carbon cycling and the availability of organic soil nutrients to plants.

Direct correlations between soil and sediment surface area and organic carbon are commonly observed (e.g., Mayer et al., 1988; Keil, 1994; Bergamaschi et al., 1997; Baldock and Skjemstad, 2000; Zimmerman and Caneel, 2001; Kennedy et al., 2002) suggesting that OM-mineral complexation can stabilize labile forms of OM against microbial attack (Jastrow and Miller, 1997; Kaiser and Guggenberger, 2000). Because mineral surfaces are often dominated by the internal surfaces of mesopores (2–50 nm in diameter; Mayer, 1994a), some workers have suggested that mineral mesopores may play a major role in the sequestration and preservation of OM in sediments by protecting OM from degradative attack by bacteria or bacterial extracellular enzymes by physical occlusion within mineral pores (Mayer, 1994a,b; Harms and Bosma, 1996; Hulthe et al., 1998). Additional experiments have indicated that <15% of the total aluminosilicate surfaces are coated with OM, suggesting that OM is present in localized patches (Ransom et al., 1997; Mayer, 1999) such as within pores.

Additional lines of evidence supporting the ‘mesopore protection hypothesis’ are found in thermodynamic and kinetic studies of organic contaminant adsorption and desorption. Cycling of organic carbon in sediments and soils has been generally characterized by complex kinetics in which fast and slow processes of carbon degradation are observed (Luthy et al., 1997). Fast cycling has been related to biodegradation of readily available OM whereas slow cycling has been attributed to the occurrence of a less available portion of the OM. This latter more recalcitrant OM may be inherently recalcitrant or it may be associated with pores in geological materials.

Several possible physical and chemical mechanisms for the sequestration of OM within mesopores have been suggested based upon extrapolation from studies of hydrophobic organic contaminants (HOCs) that indicate enhanced organic compound retention in mineral micropores. Molecules sorbed in mineral micropores are subjected to stronger adsorption energies due to compound interaction with pore walls (Farrell and Reinhard, 1994). Steric effects may also inhibit organic compound removal from such pores (Luthy et al., 1997). Restricted transport has been shown to impede compound desorption in micropores due to slow diffusion and high tortuosity (Farrell and Reinhard, 1994; Luthy et al., 1997). Lastly, the concentration of reactants within micropores may favor condensation-type reactions and, therefore, may play a role in OM sequestration as well as kerogen formation (Collins et al., 1995). Although these retention mechanisms have been associated with HOCs in micropores, it is reasonable to propose that similar processes could govern hydrophilic and macromolecular OM sequestration in mineral mesopores.

The goal of this study was to test the feasibility of the ‘mesopore protection hypothesis’ by examining the effect of mesoporosity on the adsorption/desorption of amino acids and proteins. For ‘mesopore protection’ to be a viable OM preservation mechanism, we posit that (1) small organic compounds must be able to sorb to the internal surfaces of mineral mesopores, (2) bond energies on internal surfaces must be strong enough to inhibit desorption, and (3) larger compounds (e.g., proteins, enzymes) must be inhibited from entering pores. If these processes occur, we predict that mesopores on a mineral surface will enhance adsorption and inhibit desorption of small organic molecules relative to nonporous mineral surfaces. Furthermore, we expect to see more adsorption/desorption hysteresis (non-equivalence of sorption and desorption isotherms) for mesoporous versus analogous nonporous material. We also predict that, above a threshold size, larger molecules will exhibit less adsorption to mesoporous versus nonporous mineral surfaces. Therefore, additional goals of this research were to determine the size range of representative organic compounds that may sorb to internal surfaces of the mesopores as well as the associated sorption mechanism(s).

To test these predictions, we conducted a series of batch equilibrium adsorption/desorption experiments by reacting amino acid monomers, dimers, trimers and polymers (proteins) of varying size, charge and functionality with fabricated mineral analogues (silica and alumina) containing controlled and uniform mesoporosity. Amino acids were used as model organic compounds because of their ubiquity in the environment and because they are often found in severely degraded soils and sediments even though they are readily biodegradable (e.g., Boyd and Mortland, 1996; Zang et al., 1997). Recent research has shown that proteinaceous material can survive diagenesis with very little alteration (Zang et al., 1997, 2001; Riboulleau et al., 2002). Additionally, the amine and carboxyl moieties of amino acids are predominant in a wide variety of natural OM such as lignins and humic materials.

Silicon and aluminum oxides were chosen as sorbents because they represent surfaces that are prevalent in natural environments and they exhibit very different surface chemical properties, thus providing a strong contrast in reactivity. For example, the point of zero net charge (p.z.n.c.) of SiO₂ is pH 2.0, whereas that of Al₂O₃ is pH 8.7 (Sposito, 1984). Thus, silica is primarily negatively charged throughout the pH range of natural
waters, whereas alumina is positively charged except under highly alkaline conditions. The hydroxylated surfaces of weakly acid Fe and Al oxides and hydroxides have been shown to promote strong binding of carboxylated, aromatic OM through a ligand exchange mechanism (Gu et al., 1994, 1995; Ochs et al., 1994; Chorover and Amistadi, 2001). In contrast, OM sorption to silicates has been attributed to physical forces such as hydrophobic and entropy effects (Jardine et al., 1989; Baham and Sposito, 1994; Chorover and Amistadi, 2001).

While the high density of uniform size and shape mesopores that characterizes the synthetic materials used is unlikely to be found in natural sediment or soil mineral surfaces, they serve as model surfaces to investigate the processes of OM adsorption into pores. Intraparticle mesopores are abundant in natural materials, however, and have been found to be sites of a significant portion, even a majority, of surface area in many depositional systems including soils (Pennell et al., 1995), aquifer sands (Werth and Reinhard, 1997; Ball et al., 1990), and marine and estuarine sediments (Mayer, 1994b, 1999). Mesoporosity, in the form of altered and aggregated clay, may be either intra- or interparticle and has also been found to control surface area in some sediment (Bock and Mayer, 2000; Neaman et al., 2003; Temuujin et al., 2003). Other geomaterials that have been found to contain significant mesoporosity include suspended particles in estuaries (Titley et al., 1987), weathered and laboratory-ground primary minerals (Zhang et al., 1993; Anbeek et al., 1994; Hodson, 1998; Brantley et al., 1999; Brantley and Mellot, 2000), and diatom tests (Vrieling et al., 1999). Finally, OM reactions with natural materials containing small mesopores or large micropores, including zeolites (Li and Werth, 2001), organic matter such as soot (Rockne et al., 2000), humic material and kerogen (de Jonge and Mittelmeijer-Hazeleger, 1996; Malekani et al., 1997; Huang et al., 2003), and intercalated clay minerals (Theng, 1974; Kostoglod et al., 1998) may play a role in OM preservation in some systems.

2. Experimental

2.1. Mineral sorbents

Mesoporous mineral analogues were fabricated to contain known pore sizes of unimodal distributions. These phases, also known as mesoporous molecular sieves (such as MCM-41), are expected to find applications as molecular sieves and catalysts in the petroleum industry. The amorphous mesoporous alumina (Al₂O₃) and silica (SiO₂) minerals used here were synthesized by the neutral template route (Komarneni et al., 1996). Briefly, dodecylamine was stirred in water and ethanol and then aluminum isopropoxide or tetraethyl orthosilicate was added. The material was then heated (540°C, 6 h) to remove the organic template leaving only the inorganic support. Nonporous silica and alumina (γ-Al₂O₃) were purchased from Alfa Aesar (Ward Hill, MA; stock Nos. 40007 and 89709, respectively). These materials were chosen for the similarity of their surface chemistry to that of their mesoporous analogues. The nonporous alumina was washed prior to use (0.2 kg l⁻¹ in 0.02 M CaCl₂, 24 h, 5 x). All the above minerals were analyzed by elemental analyzer and found to contain undetectable (<0.2 wt.%) organic carbon contamination. A detailed description of the surface chemistry and morphology, including a plot of pore-size distribution of these materials has been published elsewhere (Goyne et al., 2002), but is summarized here (Table 1). Specific surface area and pore structure of the minerals were determined by N₂ sorptometry (ASAP 2010, Micromeritics).

| Table 1 |

Mineral surface characteristics

<table>
<thead>
<tr>
<th>Mineral phase</th>
<th>Specific surface area a (m² g⁻¹)</th>
<th>Mean pore diameter b (nm)</th>
<th>Total pore volume b (cm³ g⁻¹)</th>
<th>Framework pore surface area (%) c,d</th>
<th>Positive charge density at pH 5.7 (nm⁻²)e</th>
<th>Net charge density at pH 5.7 (nm⁻²)f</th>
<th>p.z.n.c. d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesoporous alumina</td>
<td>242 (±5.9)</td>
<td>8.2 (±0.6)</td>
<td>0.6 (±0.03)</td>
<td>96.5</td>
<td>+0.60</td>
<td>+0.45</td>
<td>6.47</td>
</tr>
<tr>
<td>Nonporous γ-alumina</td>
<td>37 (±3.3)</td>
<td>20 (±3)</td>
<td>0.20 (±0.01)</td>
<td>−e</td>
<td>+0.69</td>
<td>+0.52</td>
<td>6.66</td>
</tr>
<tr>
<td>Mesoporous silica</td>
<td>700 (±11.9)</td>
<td>3.43 (±0.02)</td>
<td>0.91 (±0.01)</td>
<td>99.7</td>
<td>0</td>
<td>−0.15</td>
<td><2.85</td>
</tr>
<tr>
<td>Nonporous silica</td>
<td>7.5 (±0.1)</td>
<td>14 (±2)</td>
<td>0.024 (±0.003)</td>
<td>−e</td>
<td>0</td>
<td>−0.28</td>
<td><2.82</td>
</tr>
</tbody>
</table>

a Determined by multi-point N₂ adsorption and Brunauer-Emmett-Teller (BET) calculation method (mean±S.D.).
b Determined by N₂ sorptometry and BJH calculation method (Barrett et al., 1951) on the adsorption branch (mean±S.D.).
c Framework, or intraparticle porosity, is defined as pores smaller than 20 and greater than 2 nm diameter. This was done because we estimate that interparticle pores > 20 nm are likely given the small particle size (about 0.1 μm) of the nonporous minerals.
d Determined by ion and proton adsorption techniques via discontinuous titration (Goyne et al., 2002).
e No framework porosity.
Surface area was calculated using multi-point adsorption data from the linear segment of the N₂ adsorption isotherms using Brunauer-Emmett-Teller (BET; Brunauer et al., 1938) theory. Pore size distributions were calculated from adsorption branch isotherms using the Barrett-Joyner-Halenda (BJH) method (Barrett et al., 1951), assuming the pores to be cylindrical, perpendicular to the mineral surface and closed on one end, and using the Halsey layer thickness equation (Halsey, 1948).

Transmission electronic microscopy was carried out to confirm the lack of intraparticle pores in the ‘non-porous’ minerals. The results of proton titration and ion adsorption experiments indicate that the surface charge density of both alumina and silica pairs were similar at the experimental pH and differed only in surface morphology (Goyne et al., 2002).

2.2. Adsorption experiments

For each organic compound, batch adsorption/desorption (5 day/5 day) experiments were carried out in duplicate on each mineral analogue. The five day adsorption/desorption period was chosen based upon preliminary experiments that determined the great majority of adsorption to occur within about 2 days. The polypropylene centrifuge tubes (50 ml) used to contain the mineral and aqueous solution did not significantly sorb any of the compounds examined. Sorption experiments were conducted using the equivalent of 80 m² surface area for each mineral (50–1330 mg) in 25 ml aqueous background solution approximating natural sediment/soil conditions (0.02 M CaCl₂ and pH 5.7). HgCl₂ (200 mg l⁻¹) was added to prevent bacterial growth and did not significantly influence adsorption of amino acids. Rather than use a buffer that might compete for adsorption sites, pH was maintained by the addition of a predetermined amount of HCl for the alumina minerals or Ca(OH)₂ for silica minerals. The tubes were placed on end-over-end spinners in the dark (10 rpm, 22 °C) for the adsorption period. After the reaction, tubes were centrifuged (1 h, 4500 rpm) and the supernatant was removed, analyzed and replaced with 25 ml organic-free background solution prior to the desorption period. Adsorption isotherms were constructed for each amino acid compound by measuring adsorption over concentrations ranging from the minimum detectable to the maximum dissolved concentration.

Amino acid concentrations were measured on a fluorometer (Fluoro-Tec, St. John Assoc., Inc.; excitation: 320 nm, emission: 450 nm) after derivatization with a fluorescent tag, ortho-phthaldialdehyde, using the method of Lindroth and Mopper (1979) with modification (Confer et al., 1995). This method was used for the analysis of amino acid monomer, dimer and polymer concentrations by diluting solutions with the background electrolyte solution to give concentrations within the predetermined range of linear fluorescent response. The amount of a compound adsorbed (µmol m⁻²) was calculated as the difference between the amino acid concentration in solution in tubes containing the mineral and a control tube with the compoundsolution and no mineral. Compound desorption was calculated as the difference between the initial amount in solution (calculated by weighing tubes after decanting the overlying solution and assuming a density of 1 g ml⁻¹ for the entrained solution) and the final amount in solution after 5 days and centrifugation (1 h, 4500 rpm).

The amino acid monomers and polymers used as sorbates ranged in molecular weight from 57 to 169,000 Daltons (Table 2). They were purchased from Sigma (racemized forms where applicable) and used without further purification. Molecular sizes of these molecules were estimated in two ways. For monomers, dimers and

<table>
<thead>
<tr>
<th>Compound</th>
<th>Net charge at pH 5.7</th>
<th>Molecular weight (Dalton)</th>
<th>Estimated molecular diameter (nm)ᵃ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>0</td>
<td>57</td>
<td>0.6 × 0.35</td>
</tr>
<tr>
<td>Lysine</td>
<td>+1</td>
<td>128</td>
<td>0.8 × 0.35</td>
</tr>
<tr>
<td>Glutamate</td>
<td>-1</td>
<td>129</td>
<td>0.8 × 0.35</td>
</tr>
<tr>
<td>Tryptophanᵇ</td>
<td>0</td>
<td>186</td>
<td>0.8 × 0.35</td>
</tr>
<tr>
<td>Diglutamate</td>
<td>-2</td>
<td>276</td>
<td>1.2 × 0.5</td>
</tr>
<tr>
<td>Ditryptophanᵇ</td>
<td>0</td>
<td>390</td>
<td>1.4 × 0.5</td>
</tr>
<tr>
<td>Triaspartate</td>
<td>-4</td>
<td>363</td>
<td>1.2 × 0.6</td>
</tr>
<tr>
<td>Lysozymeᵇ</td>
<td>+8</td>
<td>14,300</td>
<td>4 × 3</td>
</tr>
<tr>
<td>Albuminᵇ</td>
<td>-18</td>
<td>66,000</td>
<td>15 × 4</td>
</tr>
<tr>
<td>γ-Globulinᵇ</td>
<td>+1</td>
<td>169,000</td>
<td>24 × 4</td>
</tr>
</tbody>
</table>

ᵃ Estimate of major and minor molecular dimension as described in text.
b Contain hydrophobic moiety.
trimers, nominal dimensions were determined by measuring interatomic distances and accounting for van der Waal’s radii of the atoms on molecular structures determined with energy minimization using the COM-
PASS force field (Sun, 1998). No conformational changes such as those that might take place in solution were considered. The proteins chosen for these experiments are all globular proteins and are thought to behave as ‘hard’ particles (Arai and Norde, 1990). Molecular size estimates of the protein were made by assimilating a diverse array of data from web and printing sources including polyacrylamide disc electrophoresis, gel electrophoresis, capillary electrophoresis, gel filtration chromatography, light and X-ray scattering and hydro-
dynamic experiments.

2.3. Isotherm models

Adsorption isotherms were modeled using the Lang-
muir-Freundlich (LF) isotherm, also known as the Sips equation (Sips, 1948). This model describes an equili-
brium relationship between the concentration of a sorbed compound (S) and the equilibrium compound concentration in solution (C) such that:

$$S = \frac{NbC^m}{1 + bC^m}$$

(1)

where N, b, and m are three fitting coefficients that represent the adsorption capacity, the binding affinity of the compound, and the heterogeneity of site energies, respectively. As b approaches zero at low binding affinities, the equation reduces to the classical Freundlich equation. As m approaches unity, indicative of a com-
pletely homogeneous sorbent surface (i.e. energetic equivalence of all binding sites) the equation reduces to the classical Langmuir equation (Langmuir, 1916). Thus, the hybridized LF isotherm is able to model adsorption of solutes at high and low concentrations onto homogeneous and heterogeneous sorbents. The LF isotherm was fit to the experimental data following the method of Umpleby et al. (2001) in which the solver function of Microsoft Excel 2002 is used to maximize the coefficient of determination (R^2) by iteratively varying the three fitting parameters N, b, and m. R^2 is calculated from the sum of residuals, i.e. the difference between the experiment and model-predicted sorbed concentrations.

Adsorption/desorption hysteresis is often indicative of pore-filling, capillary condensation or unique sor-
bate-sorbent interaction within pores. To quantify the degree of hysteresis, we have modified the method of Huang and Weber (1997) and Huang et al. (1998) in which a desorption hysteresis index (HI) is calculated as:

$$HI = \frac{S_d - S_{d(LF)}}{S_{a(LF)}}$$

(2)

where S_d refers to the sorbed concentration measured after the desorption step and $S_{a(LF)}$ refers to the sorbed concentration calculated by the LF isotherm fitted to the adsorption data [Eq. (1)], both for solution concentra-
tion i. While Huang and Weber (1997) and Huang et al. (1998) specify a few solution concentrations with which to make comparisons, we calculate an HI for all the desorption data points collected for each compound and use the mean, HI_{mean}, for comparison purposes.

Thermodynamic binding properties of a sorbate can be extracted directly from fitting parameters of isotherm models such as the Langmuir model that assume a homogeneous sorbent. Energetically heterogeneous sur-
faces, however, must be characterized by an affinity dis-
tribution function. Expression of a continuous distribution of binding site energies takes the form of a Fredholm integral that has no analytical solution (Geng and Loh, 2001). However, numerous approximation methods have been developed. We follow the approach of Umpleby et al. (2001) who developed an equation that gives the number of binding sites (N) for a given association constant (K_i) using the fitting parameters of the LF model. This model has been shown to yield results similar to other approximation methods but is better behaved in a variety of circumstances (Umpleby et al., 2001).

2.4. Spectroscopy

Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to obtain information on sorbate-sorbent bond type and strength. After batch adsorption experiments, minerals with sorbed amino acids (maximum adsorption obtainable) were cen-
trifuged, supernatant removed, and immediately frozen (−80 °C). Within a few days, samples were freeze-dried, ground and mixed with ground KBr powder (Spectra-
Tech, Inc.) to give a powdered sample concentration of 100 g kg$^{-1}$. Other samples were placed on a silicon carb-
idge disk and analyzed undiluted. All DRIFT spectra were obtained by averaging 400 scans at 2 cm$^{-1}$ resolu-
tion on a Nicolet Magna 560 spectrometer. Mineral analogues with no sorbed amino acid were also analyzed for comparison.

3. Results

3.1. Compound sorption—general observations

Of the amino acid monomers and polymer comp-
ounds tested (those listed in Table 2 as well as dilsyne,
tetra-aspartic acid and insulin, data not shown), all except net positively charged lysine and dlysine displayed measurable sorption to both mesoporous aluminas (MP-Al) and nonporous alumina (NP-Al). Of the monomers and oligomers tested, only tryptophan and ditryptophan sorbed to either mesoporous silica (MP-Si) or nonporous silica (NP-Si). Most surprisingly, positively charged lysine (+1) and dlysine (+2) did not measurably adsorb to the negatively charged silica surface though these compounds strongly sorb to clay minerals and sediments (Hedges and Hare, 1987; Henrichs and Sugai, 1993; Wang and Lee, 1993). In addition, all the proteins, even those with large net negative charges, sorbed to silica. Quantitative intermolecular trends and comparisons between minerals can only be made by comparing sorption at equivalent equilibrium concentrations using a modeling approach (in discussion section).

3.2. Adsorption-desorption isotherms

The adsorption isotherms are plotted, by convention, on a log-log scale. Here, sorbed concentrations are normalized to surface area so that direct comparisons between porous and nonporous phases may be made. Adsorption measurements made in duplicate were, in all cases except those of very low concentration, in close agreement. Larger variations were observed for duplicate desorption measurements due, presumably, to the larger analytical error associated with removing the supernatant and estimating the remaining entrained solution.

The adsorption isotherms for most amino acids and proteins on alumina (Fig. 1) and silica (Fig. 2) are nonlinear and generally concave downward on both a normal and log–log scale. These isotherms may be classified as type IV (Brunauer, 1943) and exhibit, in most cases, evidence of high surface affinity and surface saturating behavior. Isotherms of this shape are commonly observed for the adsorption of ionic organic compounds to minerals (Schwarzenbach et al., 1993). With the exception of glycine, ditryptophan, and lysozyme on alumina, and tryptophan on silica, adsorption maxima plateaus were reached at high solution concentrations.

For glycine and glutamate on alumina, and for tryptophan on silica, desorption isotherms followed adsorption isotherms, within analytical error. That is, they were non-hysteretic and indicative of complete adsorption reversibility. All other compounds exhibited varying degrees of desorption hysteresis. For diglutamate on MP-Al, there was no measurable desorption i.e. adsorption was completely irreversible. In this case and others where desorption was undetectable, an equilibrium solution concentration of 3.2×10^{-4} μM (minimum detectable) was assigned for the purposes of graphing and modeling. Quantitative evaluation of the extent of desorption hysteresis is presented in the following discussion.

3.3. Ancillary data

Measurements of mineral surface area and pore volume before and after adsorption/desorption experiments provide evidence for compound adsorption and retention on the internal surfaces of mesopores. Control samples with no sorbed compounds recorded slight decreases in surface area and increases in pore volume (about 10%) due to mineral dissolution. Relative to control minerals, the surface area of MP-Al decreased by 2.4% after the sorption of glycine (Table 3). Although this change was not greatly different from that of NP-Al, the pore volume decrease of MP-Al with sorbed glycine was much greater (5 versus 1%). Similarly, only pore volume, and not surface area, decreased (6.7%) after the sorption of tryptophan to MP-Al. Both surface area and pore volume decreases for MP-Al were more dramatic, however, following the sorption of glutamate (14.1 and 16.5%, respectively) and ditryptophan (21.9 and 22.8%, respectively) versus much smaller changes after the sorption of these compounds to NP-Al. Even greater decreases in surface area and pore volume were observed after the sorption of albumin and γ-globulin to MP-Al and MP-Si, presumably because pore openings were blocked by these larger proteins.

Loadings of only a few compounds, glutamate, diglutamate, tryptophan and dihydroxyphenylalanine, were great enough to obtain infrared (DRIFT) absorption signals of sufficient intensity for analysis. We observed differences between the porous-sorbed versus nonporous-sorbed spectra of only glutamate (Fig. 3) and diglutamate (not shown). We attribute the absorption bands in the 3500, 1600 and the 1400 cm$^{-1}$ region, to sorbed water (OH–H) and amine (N–H), asymmetric carboxylate (COO$^-$), and symmetric carboxylate bond stretching, respectively (Gu et al., 1995; Vermohlen et al., 2000). The adsorption band of glutamate and diglutamate sorbed to NP-Al at 1615 cm$^{-1}$ was shifted downward by 45 and 27 cm$^{-1}$, respectively, when these compounds were sorbed to MP-Al. This decrease in bond frequency may be indicative of a stronger bond environment for mesoporous versus nonporous-bound amino acids, and shall be discussed further in the following section.

4. Discussion

4.1. Sorption mechanism

The adsorption of only net negatively charged monomers and oligomers to the positively charged alumina surface confirmed the importance of electrostatic interaction
Fig. 1. Adsorption isotherms for amino acids and proteins on nonporous (NP-Al) and mesoporous (MP-Al) alumina. Error bars represent 95% confidence intervals for each data point (difference between two amino acids analyses). Closed circles are adsorption data and open circles are desorption data. Lines are modeled Langmuir–Freundlich adsorption isotherms as described in text.
for amino acid adsorption found by others (Rosenfeld, 1979; Hedges and Hare, 1987; Henrichs and Sugai, 1993; Wang and Lee, 1993). Because of this, and because no influence of amino acid loading on the final pH of the solution was observed (data not shown), we hypothesize that the bonding mechanism is predominantly outer-sphere complexation associated with anion exchange rather than inner-sphere complexation associated with ligand exchange. An anion exchange reaction with the alumina surface such as;

\[
\equiv \text{AlOH}_2^+ - - - \text{Cl}^- + R\text{-COO}^- \leftrightarrow \equiv \text{AlOH}_2^+ - - - \text{OOC-R}^- + \text{Cl}^- \quad (3)
\]

is likely and has recently been proposed to describe the adsorption of the contaminant, 2,4-dichlorophenoxyacetic acid to these same alumina materials based on spectroscopic evidence (Goyne, in press). It should be noted, however, that evidence presented by others supports a predominantly inner-sphere complexation-ligand exchange mechanism for adsorption of some organic acids to alumina and clays (McKnight et al., 1992; Ochs et al., 1994; Arnarson and Keil, 2000; Vermohlen et al., 2000).

In contrast to alumina, electrostatic attraction did not control adsorption of amino acid monomers to the silica phases. Instead, only amino acid compounds with hydrophobic moieties sorbed to silica. For this reason, as well as its low surface charge density, it is likely that nonpolar siloxane (Si-O-Si) rather than hydrophilic silanol (Si-OH) are important sites of hydrophobic bonding of amino acids on silica surfaces.

Because of their size, plasticity and multifunctionality, determination of a specific bonding

Fig. 2. Adsorption isotherms for amino acids and proteins on nonporous (NP-Si) and mesoporous (MP-Si) silica. Error bars represent 95% confidence intervals for the data point (difference between two amino acids analyses). Closed circle are adsorption points and open circles are desorption points. Lines are modeled Langmuir-Freundlich adsorption isotherms as described in text.
mechanism for proteins adsorbed to surfaces is difficult
(Norde, 1986; Arai and Norde, 1990). Although many
reactions are possible, hydrogen bonding, electrostatic
and hydrophobic interaction are considered most
important in driving protein adsorption (Yoon et al.,
1996, 1999; Ding and Henrichs, 2002). All the proteins
tested in this study sorbed strongly to both alumina and
both silica phases, regardless of net charge, suggesting
mediation by non-specific hydrophobic attractive inter-
actions such as induced dipole or London dispersive

Table 3
Change in mineral surface area and pore volume with compound adsorption

<table>
<thead>
<tr>
<th>Sorbent–sorbate pair</th>
<th>% Change surface area(a)</th>
<th>% Change pore volume(a)</th>
<th>Sorbate loading (mg m(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP-Al + glycine</td>
<td>−2.2</td>
<td>−1.0</td>
<td>0.25</td>
</tr>
<tr>
<td>MP-Al + glycine</td>
<td>−2.4</td>
<td>−5.0</td>
<td>0.27</td>
</tr>
<tr>
<td>NP-Al + glutamate</td>
<td>−4.0</td>
<td>6.7</td>
<td>0.22</td>
</tr>
<tr>
<td>MP-Al + glutamate</td>
<td>−14.1</td>
<td>−16.5</td>
<td>0.29</td>
</tr>
<tr>
<td>NP-Al + ditryptophan</td>
<td>−0.8</td>
<td>14.3</td>
<td>(3.3 \times 10^{-3})</td>
</tr>
<tr>
<td>MP-Al + ditryptophan</td>
<td>−21.9</td>
<td>−22.8</td>
<td>0.03</td>
</tr>
<tr>
<td>NP-Al + albumin</td>
<td>−10.9</td>
<td>14.3</td>
<td>0.76</td>
</tr>
<tr>
<td>MP-Al + albumin</td>
<td>−21.0</td>
<td>−29.1</td>
<td>0.19</td>
</tr>
<tr>
<td>NP-Al + γ-globlin</td>
<td>−19.7</td>
<td>−12.5</td>
<td>1.88</td>
</tr>
<tr>
<td>MP-Al + γ-globlin</td>
<td>−54.6</td>
<td>−55.7</td>
<td>1.46</td>
</tr>
<tr>
<td>NP-Si + tryptophan</td>
<td>−3.5</td>
<td>0.0</td>
<td>(2.3 \times 10^{-4})</td>
</tr>
<tr>
<td>MP-Si + tryptophan</td>
<td>2.4</td>
<td>−6.7</td>
<td>(2.3 \times 10^{-4})</td>
</tr>
<tr>
<td>NP-Si + albumin</td>
<td>−19.3</td>
<td>0.0</td>
<td>0.27</td>
</tr>
<tr>
<td>MP-Si + albumin</td>
<td>−27.9</td>
<td>−25.3</td>
<td>0.13</td>
</tr>
</tbody>
</table>

\(a\) Percentage difference between control mineral (no sorbed compound) and mineral with sorbed compound, determined by N\(_2\)
adsorption as described in text after oven drying (24 h at 60 °C).

Fig. 3. DRIFT spectra for nonporous (NP-Al) and mesoporous (MP-Al) alumina with sorbed glutamate and with no sorbed
compounds (control).
Table 4
Best fit Langmuir–Freundlich adsorption isotherm parameters

<table>
<thead>
<tr>
<th>Sorbate</th>
<th>Alumina sorbent</th>
<th>Silica sorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Glutamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Diglutamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>Ditryptophan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Triaspartate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Lysozyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>γ-Globulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.009</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sorbate</th>
<th>Alumina sorbent</th>
<th>Silica sorbent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Glutamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>Diglutamate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Lysozyme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>γ-Globulin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>0.009</td>
<td></td>
</tr>
</tbody>
</table>

\(N = \) LF adsorption capacity (\(\mu \text{mol m}^{-2} \)), \(b = \) LF binding affinity (\(\mu \text{M}^{-1} \)), \(m = \) LF heterogeneity index, \(K_o = \) LF mean association constant (\(\mu \text{M}^{-1} \)), \(R^2 = \) correlation coefficient for the model fit to the data, and \(H_{\text{mean}} = \) the mean desorption hysteresis index.

Forces. The high surface reactivity of proteins on natural sediments has been attributed to these mechanisms by others (Kirchman et al., 1989; Nguyen and Harvey, 2001). While some have concluded that proteins will adsorb to hydrophobic surfaces such as silica under all conditions of charge interaction (Arai and Norde, 1990), other workers (Robinson and Williams, 2002) have observed that significant protein (albumin) adsorption to silica only occurred at higher electrolyte concentrations (>0.01 M).

4.2. Isotherm modeling

Though most compounds approached a maximum adsorption plateau value at high solution concentrations, the isotherms were poorly modeled by the Langmuir equation perhaps because this model assumes a constant energy of adsorption at all sites. While the Freundlich model does not use this assumption, it assumes an infinite supply of unreacted adsorption sites and cannot, therefore, model saturation behavior. The Langmuir–Freundlich (LF) model behaves as a Freundlich equation at low concentrations and as a Langmuir equation at high solute concentration. This isotherm model has proved successful in modeling a number of other systems involving the adsorption of simple organic compounds and polymers to heterogeneous materials (Yoon et al., 1996; Lee et al., 1998; Kilduff and Wigton, 1999; Li and Werth, 2001; Umpleby et al., 2001).

Of the models tested, the LF model provided the best fit to the data with \(R^2 \) values ranging from 0.85 to 1.0 (Table 4). None of the models tested was able to reproduce the isotherm for diglutamate adsorption to NP-Al. The LF parameter \(N \), the adsorption capacity, is in most cases similar to the maximum measured loading. Much higher \(N \) parameters, however, were calculated for glycine and lysozyme on both NP-Al and MP-Al, tryptophan on both silica minerals, and ditryptophan on NP-Si. It is clear from this and from the isotherm graphs (Figs. 1 and 2) that maximum adsorption was not reached for these sorbate-sorbent pairs.

While some authors have described the LF parameter \(m \) as a heterogeneity index that may only vary from 0 to 1 (Geng and Loh, 2001; Umpleby et al., 2001), with
Fig. 4. Comparisons between modeled adsorption capacity parameter (N) versus maximum molecular diameter for compounds sorbed to (a) nonporous alumina versus silica (b) nonporous versus mesoporous alumina and (c) nonporous versus mesoporous silica. Monolayer coverage shown in (a) is calculated by molecular dimension estimates (see text) and assumes cubic closest packing geometry.
values near to one indicating an energetically homogeneous surface, others refer to it simply as an exponent related to the heterogeneity of binding site energy distribution and allow it to vary to all positive values (Yoon et al., 1996, 1999; Bautista et al., 2002). We have found that acceptable fits to our adsorption data could not be achieved unless this parameter was allowed to assume values greater than 1. Most m values were in the range of 0.5–2.3. Isotherms with higher modeled m values, such as for triaspartic acid on both alumina phases and lysozyme and γ-globulin on silica, displayed high slopes at low solution concentration and sharp-edged plateaus. Isotherms such as these may indicate high-affinity attractive forces that disappear as high-energy binding sites are depleted. Binding affinities and heterogeneity indices were generally greater for mesoporous than for nonporous minerals, though no consistent trend could be discerned.

4.3. Comparisons of nonporous phase adsorption capacities

For a given mineral, adsorption capacity expressed on a molar basis generally decreased with sorbate molecular size (Fig. 4) and weight. When expressed on a weight basis, the opposite was true. The hydrophilic amino acid monomer and protein adsorption capacities of NP-Al were about twice that of NP-Si, whereas the adsorption capacities of NP-Si for hydrophobic tryptophan and ditryptophan were 2–3 times greater (Fig. 4a). The adsorption capacities of glycine and glutamate on NP-Al (1.4 and 1.2 μmol m$^{-2}$, respectively) are similar to the density of positively charged sites at pH 5.7 on NP-Al (1.1 μmol charge m$^{-2}$; Goyne et al., 2002). In contrast, N values for tryptophan and ditryptophan on NP-Si (0.088 and 0.15 μmol m$^{-2}$, respectively), are well below that mineral’s charge density of 0.5 μmol (–) charge m$^{-2}$ (Goyne et al., 2002). These relationships support the proposed bonding mechanisms of predominantly electrostatic interaction (anionic exchange with carboxylate groups) for hydrophilic compounds on alumina and predominantly hydrophobic interaction for hydrophobic compounds on silica. For both NP-Al and NP-Si, modeled amino acid monomer and dimer adsorption capacities are one-fifth (for glycine and glutamate) to two orders of magnitude (for tryptophan and ditryptophan) below a monolayer equivalent coverage based upon closest molecular packing geometry (Fig. 4a). Amino acid monomer and oligomers adsorbed to these nonporous mineral surfaces are, therefore, constrained by surface functionality, i.e. charge and/or hydrophobicity, rather than molecular size.

Other mechanisms contribute to protein adsorption. For example, there is evidence that structural rearrangement occurs during the sorption of proteins (Su et al., 1998; Giacomelli and Norde, 2001) and this breaking of intramolecular bonds causes an increase in entropy that favors sorption (Norde et al., 1986). We observe that protein adsorption capacities closely correspond to a calculated ‘closest packing’ monolayer, based on globular conformations, for both alumina and silica (Fig. 4a) and are far below these mineral’s surface charge densities (Table 1). Further, protein adsorption capacity on nonporous minerals decreases with increasing molecular size.

The adsorption capacities of the proteins on nonporous minerals measured in this study are similar to those reported by others. For example, many workers

<table>
<thead>
<tr>
<th>Sorbate</th>
<th>Equilib. conc. a (µM)</th>
<th>LF modeled equilibrium sorbed concentration b (µmol m$^{-2}$)</th>
<th>Sorbed conc.</th>
<th>Equilib. conc. a (µM)</th>
<th>LF modeled equilibrium sorbed concentration b (µmol m$^{-2}$)</th>
<th>Sorbed conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>10</td>
<td>8.9E-04 1.4E-03 1.6</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Glutamate</td>
<td>10</td>
<td>4.1E-03 2.4E-02 5.8</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Diglutamate</td>
<td>10</td>
<td>9.0E-03 2.7E-01 30</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Tryptophan</td>
<td>10</td>
<td>8.0E-05 5.6E-04 7.1</td>
<td>10</td>
<td>2.5E-04 3.3E-05 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ditryptophan</td>
<td>10</td>
<td>1.2E-03 5.0E-03 4.2</td>
<td>10</td>
<td>9.0E-04 1.8E-06 0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triaspartate</td>
<td>5</td>
<td>5.8E-02 5.2E-02 0.9</td>
<td></td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Lysozyme</td>
<td>10</td>
<td>8.2E-04 1.2E-03 1.5</td>
<td>5</td>
<td>8.8E-03 6.7E-03 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>0.1</td>
<td>6.9E-04 9.1E-04 1.3</td>
<td>0.1</td>
<td>4.6E-04 2.0E-04 0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ-Globulin</td>
<td>0.1</td>
<td>8.3E-05 1.9E-04 2.3</td>
<td>0.03</td>
<td>1.6E-05 1.0E-05 0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Equilibrium concentration chosen to be in low-medium range of isotherm.

b Equilibrium sorbed concentration at chosen solution concentration calculated using LF isotherm.
have measured maximum sorbed concentrations of albumin on silica in the range 1–3 mg m$^{-2}$ (Norde et al., 1986; Su et al., 1998; Giacomelli and Norde, 2001). Various studies have examined the adsorption of amino acid monomers to sediments and clays (e.g., Dashman and Stotsky, 1982; Henrichs and Sugai, 1993; Wang and Lee, 1993; Naidja and Huang, 1994). However, it is difficult to make comparisons with these studies because experimental conditions such as pH or background electrolyte concentration were not controlled, mineral surface area was not recorded, or OM coatings were not removed.

4.4. Adsorption capacity of mesoporous phases

While adsorption to the mesoporous minerals exhibited the same intermolecular loading trends as the nonporous minerals, we found consistent quantitative differences. All amino acid monomers, oligomers, and lysozyme exhibited greater adsorption capacities on MP-Al versus NP-Al on a surface area-normalized basis (Fig. 4b). In contrast, only tryptophan exhibited a greater adsorption capacity on mesoporous versus nonporous silica (Fig. 4c). The lowest factors of mesopore adsorption capacity enhancement were calculated for diglutamate and triaspartic acid on alumina (1.5 and 1.3, respectively) and the greatest for tryptophan on silica and glycine, lysozyme, and ditryptophan on alumina (27.3, 18.6, 7.2 and 8.9, respectively). The first three of these do not reflect true differences in loadings, however, because they are modeled values and ‘plateau’ sorbed concentrations were not reached. But the maximum sorbed concentrations of these compounds were also greater for mesoporous versus nonporous minerals analogues (by factors of 1.5–5), measured at equivalent solution equilibrium concentrations. In general, the mesopore enhancement effect was greatest for monomers and decreased with molecular size (or weight), and greater for compounds with hydrophobic moieties. These trends, however, were not consistent.

Both the maximum measured loadings and the calculated adsorption capacities of the two largest proteins, albumin and γ-globulin on MP-Al, were about one-tenth and one-half, respectively, that of NP-Al. Adsorption capacities of all compounds other than tryptophan were greater for NP-Si versus MP-Si by factors ranging from 3 to 20 (Tables 4 and 5). To generalize, adsorption capacities of all compounds of molecular dimensions no larger than about half the pore diameter were greater than that of nonporous minerals. This statement of size constraint should be considered tentative, however, as the most appropriate of the various methods of molecular dimension estimation (including hydrodynamic radii, radius of gyration, static model, and whether to include the sphere of hydration) is unclear. There are additional uncertainties regarding the most appropriate model for the calculation of surface area and pore size by N$_2$ sorptometry. Lastly, no compounds were tested with molecular dimensions between half and equal to the diameter of the pores.

Post-adsorption experiment BET analyses also indicate that adsorption of organic compounds within mesopores occurred (Table 3). Both surface area and pore volume reductions suggest at least partial filling of the mesopores. These volume reductions cannot, however, be used to evaluate sorption mechanisms since changes in molecular associations must occur upon drying of the samples (see discussion in Goyne et al., in press). To determine whether surface area or pore volume may have constrained MP-Al adsorption capacity, we calculated maximum theoretical compound loadings assuming monolayer coverage or complete pore volume filling (Table 6). These calculations indicate that, while glycine adsorption on MP-Al exceeds monolayer coverage and may be limited, instead, by pore volume, other amino acid compounds do not exceed monolayer or pore-filling capacities of MP-Al or MP-Si. The modeled lysozyme adsorption capacity, however, is greater than both surface area and volume-filling theoretical capacities. In this case, molecular size, adsorption capacity, or the area of sorbate surface occupation may have been overestimated, or multilayer adsorption may have occurred on external mineral surfaces. It is also interesting to note that modeled adsorption capacities of the two largest proteins exceed their theoretical pore volume filling capacity but not their monolayer surface covering capacity.

It is clear that adsorption of compounds larger in size than mesopore diameters was greatly reduced (by factors ranging from 1.4 to 21; Fig. 4) despite similar surface charge densities on the porous and nonporous mineral analogues. For compounds larger than the pores, reduced adsorption capacity of the mesoporous compared to nonporous minerals is consistent with size exclusion from pores. Although sorption onto porous and nonporous minerals has not, to our knowledge, been directly compared, a competitive effect favoring the sorption of smaller over larger nonpolar organic molecules onto microporous materials has been noted. For example, larger sorbates such as atrazine and phenanthrene were excluded from the internal surfaces of soil organic matter relative to smaller molecules such as phenol and trichloroethylene (Xing and Pignatello, 1997; Graber and Borisover, 1998). Similarly, cytochrome c, papain and trypsin, but not peroxidase (3, 3.6, 3.8, and 4.6 nm molecular diameter, respectively) could be immobilized within the 4 nm diameter pore openings of a silicate (Diaz and Balkus, 1996). Cytochrome c was also excluded from 2.8 nm diameter silicate pores, but, along with pepsin (4-5 nm molecular diameter), was readily sorbed into 13 nm silicate mesopores (Deere et al., 2002). Others have shown similar
sorbed to MP-Al versus NP-Al by factors ranging from 1.3 to 30 (Table 5). In contrast, compounds were not inhibited from entering pores due to molecular size constraints, affinity spectra peaks are observed in loadings at the lower equilibrium solution concentrations.

In order to examine possible changes in sorbate-sorbent affinity with increased sorbate loadings, adsorption affinity distributions were calculated for each sorbate-sorbent pair. Six representative distributions are shown in Fig. 5. All the affinity distributions calculated for the compounds examined in this study were assumed to be unimodal and symmetrical. The mean association constant for each sorbent-sorbate pair \((K_a = \frac{b^1}{m};\) Table 4), therefore, corresponds to the association constant \((K)\) of the maximum number of bonding sites or the mode of the affinity distribution (Umpleby et al., 2001). Although this model should be treated as semi-empirical because it assumes a simple and uniform energy distribution, a few generalizations can be made.

\(K_a\) tends to increase with the molecular weight of the compound bound to a given phase. The height of the mode of the affinity distribution corresponds to the modeled adsorption capacity and is greater for compounds sorbed to MP phases versus their NP analogs as previously discussed. In nearly all cases in which compounds were not inhibited from entering pores due to molecular size constraints, affinity spectra peaks are shifted to lower \(K\) values and broadened when sorbed to the MP phases (Fig. 5a and b). This was true for all compounds except for diglutamate sorbed to alumina. Peak broadening is an indication of greater heterogeneity which can be attributed to a diversity of bonding site energies or to a diversity of binding mechanisms due to the presence of mesoporosity. The shift to the left suggests that, at higher sorbate concentrations, the additional sorbate-sorbent interactions with mesoporous material are less strong as those on the nonporous minerals.

In this study, correspondence between experimental conditions such as pH and solvent type and affinity distribution (Yoon et al., 1996; Geng and Loh, 2001) indicates that sorption mechanism must play a significant role. In addition, modeling has shown that compounds of varying size interact differently with energetically heterogeneous surfaces (Dabrowski and Jaroniec, 1987), a finding that is consistent with our data.

4.6. Desorption hysteresis

Desorption hysteresis was quantified by calculating a hysteresis index for each sorbate–sorbent pair. With the exception of glutamate sorbed to alumina that exhibited no hysteresis, all amino acid monomers and dimers exhibited greater \(H_{IMN}\) values for mesoporous versus nonporous mineral sorbents (Table 4). Hysteresis was enhanced by factors of 2–10 for amino acid monomers and \(10^1–10^6\) for dimers and trimers on mesoporous versus nonporous minerals. While all proteins examined exhibited desorption hysteresis, there were no consistent trends in \(H_{IMN}\) values for mesoporous versus nonporous analogs. Apart from lysozyme sorbed to MP-Al, other evidence does not indicate the adsorption of these proteins to the internal surfaces of mesopores. Nevertheless, surface heterogeneity, multiple points of attachment, the presence of micro pores, post-adsorption molecular rearrangements, or some other factor as yet unconsidered, apparently leads to desorption hysteresis in the cases of proteins.

4.7. Mesopore adsorption mechanism

Although enhanced adsorption of gases within micropores has long been recognized (Everett and Powl, 1975), a mechanism for enhanced adsorption of organic compounds onto mesoporous minerals is not obvious. While theory describing the adsorption of gases to heterogeneous microporous and mesoporous materials exists (see Rudzinski and Everett, 1992), less work has been done describing the adsorption of organic compounds to mesoporous materials. Such a mechanism must explain the enhanced adsorption, reduced desorption, increased adsorption affinities at low sorbate loadings and decreased adsorption affinities at high sorbate loadings that we measure for most compounds that sorb to mesoporous internal surfaces.
number of possible mechanisms could explain at least some of these observations.

Increased attractive interaction between compounds sorbed to internal mesopore surfaces in monolayer or near monolayer coatings may occur due to surface curvature that brings unbound moieties closer together (Farrell and Reinhard, 1994). This mechanism has been invoked to explain enhanced adsorption of 2,4-dichlorophenoxyacetic acid to mesoporous alumina (Goyne et al., in press). We do not favor this mechanism for phenomena described here because one would not expect all the compounds tested in this study to exhibit self-attraction, particularly those with a high net charge such as triaspartic acid. Additionally, many of the compound loadings do not approach monolayer coverage.

Increased attractive sorbate-sorbent interaction may be caused by curvature or roughness of pore walls. As pointed out by Farrell and Reinhard (1994), due to the superposition of interaction potentials on opposing pore walls, adsorption energies should be greatly increased within pores. Interaction potentials have been calculated to be significantly increased for noble gases sorbed within micropores up to three molecular-diameters in size (Everett and Powl, 1975). Alternatively, it is plausible that surface curvature or increased defect structures might favor the formation of bidentate or bridging bonds between sorbent and sorbate relative to monodentate bonds that might be favored on a flat mineral surface. This mechanism is consistent with the downward frequency shift in the asymmetric carboxylate vibration associated with the adsorption of glutamate and diglutamate to MP-Al relative to NP-Al (Fig. 3).

However, this shift was not observed for all compounds tested. Goyne et al. (in press) have shown that this effect may be an artifact of freeze-drying because they did not observe the same shifts when wet samples were examined by attenuated total reflectance-Fourier transform infrared (ATR-FTIR). Further, the absence of hydroxyl release upon sorption suggests outer-sphere bonding and our models indicate decreased rather than increased adsorption bond energies for mesopore-bonded compounds at high loading rates. For these reasons, we do not favor this mesopore adsorption-enhancement mechanism.

Polymerization of compounds might be enhanced within pores such that their exit from pores is hindered by size constraints or steric considerations. Some have observed polymerization of amino acids sorbed to mineral surfaces including alumina and silica gel (e.g., Ferris et al., 1996; Bujdak and Rode, 1999, 2002; Ogawa et al., 1999). These experiments have led to the hypothesis that minerals may have catalyzed the formation of the first prebiotic peptides. Though the influence of surface morphology on polymerization has not been explored experimentally, some have hypothesized that the first cells may have originated within mineral mesopores (Smith et al., 1999). Experiments observing mineral-catalyzed polymerization, however, were carried out using specific conditions such as multiple wetting/drying cycles, high temperatures or the addition of condensing agents. We extracted organic matter from the MP-Al and MP-Si minerals following adsorption experiments with glycine, glutamate and tryptophan. High pressure liquid chromatography (HPLC) analysis

<table>
<thead>
<tr>
<th>Sorbate</th>
<th>MP-Al sorbent (+1.0 μmol charge m⁻²)</th>
<th>MP-Si sorbent (−0.25 μmol charge m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>26 1.5 7.91 32.7</td>
<td>— 7.91 17.1</td>
</tr>
<tr>
<td>Glutamate</td>
<td>3.1 0.40 5.93 18.4</td>
<td>— 5.93 9.64</td>
</tr>
<tr>
<td>Diglutamate</td>
<td>0.38 0.11 2.77 5.72</td>
<td>— 2.77 2.30</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>0.09 0.017 5.93 18.4</td>
<td>2.4 0.45 5.93 9.64</td>
</tr>
<tr>
<td>Ditryptophan</td>
<td>0.31 0.12 2.37 4.20</td>
<td>0.0003 0.0001 2.37 2.20</td>
</tr>
<tr>
<td>Triaspartate</td>
<td>0.22 0.080 2.31 4.76</td>
<td>— 2.31 2.50</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>6.5 92.95 0.14 0.114</td>
<td>0.15 2.15 0.14 0.060</td>
</tr>
<tr>
<td>Albumin</td>
<td>0.004 0.26 0.03 0.005</td>
<td>0.004 0.27 0.03 0.002</td>
</tr>
<tr>
<td>γ-Globulin</td>
<td>0.009 1.52 0.02 0.002</td>
<td>0.0005 0.079 0.02 0.001</td>
</tr>
</tbody>
</table>

| a Based on BET-calculated surface area and pore volume. Assumes major×minor axis as molecular area, major×major×minor axis as molecular volume, globular molecular conformation and cubic symmetry packing.
Fig. 5. Affinity distributions; binding sites density, N, versus log of association constant K for (a) glutamate, (b) lysozyme and (c) γ-globulin, sorbed to nonporous (NP-Al) and mesoporous (MP-Al) alumina.
of the extracts revealed no evidence of the formation of dimers or oligomers from these monomers. Further, while this mechanism may explain the observed slower rates of desorption (hysteresis), it cannot explain the greater adsorption capacity of mesoporous surfaces.

Adsorption may be affected by chemical or physical changes in the aqueous layer adjacent to the mineral surface due to mesopore containment. For example, partitioning of nonpolar compounds into vicinal water, a highly order layer of water within a few nanometers of the mineral surface (Schwarzenbach et al., 1993), may be enhanced by strong force fields within pores. Wang et al. (2002) have noted enhanced adsorption of ions (H\(^+\), OH\(^-\), and Zn\(^+\)) on mesoporous versus nonporous alumina in both experiments and models. These results were attributed to overlap of the electric double layer (EDL) within pores leading to greater surface charge density. This mechanism might explain the increased adsorption affinities that we measure at low sorbent loadings on MP-Al relative to NP-Al. It would also provide an explanation for the absence of this effect for the more hydrophobic silica surface. Arguing against this mechanism, we measured no difference between the surface charge densities of MP-Al and NP-Al at the experimental pH (Goyne et al., 2002). At 0.02 M, the ionic strength of our experiments, one can calculate an EDL thickness of about 2 nm. In the 8.2 nm diameter pores of MP-Al used here, one would not expect a great deal of EDL overlap unless the pores are slit-shaped. Measurements of sorption enthalpies led Farrell et al. (1999) to conclude that, for trichloroethylene, sorption into vicinal water within micropores was not a predominant sorption mechanism. Lastly, one would not expect these mechanisms to be effective for a wide range of compound types including hydrophilic and hydrophobic amino acids and small proteins. EDL overlap may play a role in the enhanced adsorption of organic compounds in mesopores but cannot explain all of our experimental observations.

Pore-filling has been proposed to explain the non-linear isotherms (Xing and Pignatello, 1997; Kleineidam et al., 2002) and enhanced adsorption of nonpolar and low-polarity organic compounds (Xing et al., 1996; Xia and Ball, 1999) often observed during sorption into micropores. This mechanism is somewhat analogous to the capillary condensation of gases within mesopores that is mathematically described by the BJH method (Barrett et al., 1951) and is used to calculate pore volume by N\(_2\) adsorption. Capillary condensation occurs as multilayers are deposited from opposing walls and is characterized by enhanced sorbent uptake at low relative vapor pressures due to the presence of strong force fields near pore walls (Webb and Orr, 1997). Desorption hysteresis occurs because evaporation occurs at lower relative pressures than condensation because of the presence of a curved meniscus (Webb and Orr, 1997). Solute adsorption within pores presents an analogous situation in that the aqueous solubility of a solute molecule is relatively decreased due to the increase in interfacial area during desorption (Farrell et al., 1999).

We favor a pore-filling mechanism to explain the majority of our experimental observations. It explains the decreases in pore areas and volumes following adsorption experiments (Table 3). Because pores needn’t be completely filled, loading capacities less than that of a theoretical monolayer or a filled pore (Table 5) are acceptable. While EDL overlap or increased sorbate-sorbent interaction may be invoked to explain the relatively increased adsorption affinities at low sorbent loadings on MP-Al (Table 6), pore-filling may explain the apparently decreased sorption affinities at higher sorbate loadings (Fig. 5). As pores fill, higher energy sorbent-sorbate interaction sites become occupied and lower strength sorbate-sorbate interactions begin to occur. For example, the appearance of a low energy peak during N\(_2\) adsorption to a silica gel was attributed to the onset of multilayer adsorption whereas higher energy peaks were related to interactions at the silica surface (Puziy et al., 2003).

Desorption may be inhibited by the creation of a hydrophobic nanoenvironment (Farrell and Reinhard, 1994) within the confined environment of a mesopore where hydration spheres may be collapsed or water excluded. We observed that compounds with some hydrophobicity display a greater degree of hysteresis. Hanna et al. (2002) measured increasing sorption into silica mesostructures along a series of organic compounds with increasing hydrophobicity. For hydrophilic compounds, attraction may be enhanced by hydrogen-bonding, electrostatic or ion-dipole interaction within mesopores. It should be noted that some of the above mechanisms may operate in tandem. More focused study of the bonding mechanism for organic matter within mesopores is clearly needed.

5. Conclusions

While the mechanistic details of mesopore sorption remain to be further studied, it is clear that amino acid and small protein compounds may be strongly ‘bound’ within mesopores and undergo reduced desorption. Further, larger proteins, such as those the size of most enzymes, are excluded from the pores. The ‘mesopore protection hypothesis’ is, therefore a feasible preservation mechanism for soil and sedimentary environments. This mechanism will more effectively preserve hydrophobic compounds or compounds with hydrophobic moieties that are less readily desorbed from mesopores. This may partly explain the preferential preservation of these types of compounds in soils and sediments. This
study indicates, however, that even hydrophilic compounds may be sequestered within mineral mesopores. While these experiments were carried out in model systems, and soils and sediment are much more heterogeneous with a wide range of pore sizes and mineral types, these results demonstrate the possible importance of mesopores in controlling the preservation and fractionation of both natural organic matter and organic contaminants.

Acknowledgements

We thank Bharat Newalkar of the Materials Research Laboratory, The Pennsylvania State University for production of the mesoporous phases, Mary Kay Amstadi, University of Arizona, for assistance with DRIFT analyses, and James Kubicki, Penn State Department of Geosciences, for assistance with molecular modeling. We also appreciate the helpful suggestions of Drs. Larry Mayer and Karen Wilson in their review of this manuscript. This research was partially supported by the Penn State Biogeochemical Research Initiative for Education (BRIE) sponsored by NSF (IGERT) grant DGE-9972759, Materials Research Science and Engineering Center (MRSEC) under grant DMR 0213623 (for S.K.). Acknowledgment is also made to the donors of the American Chemical Society Petroleum Research Fund for partial support of this research.

Associate Editor—B. Keely

References

de Jonge, H., Mittelmeijer-Hazeleger, M.C., 1996. Adsorption of CO₂ and N₂ on soil organic matter: nature of porosity,
surface area, and diffusion mechanisms. Environmental Science and Technology 30, 408–413.

