Lunar Lasers and Cosmic Crops: NASA Funds UArizona Space Exploration Missions

Thursday, March 5, 2020
The 18-foot long, 7-foot diameter lunar greenhouse chamber is equipped as a prototype bioregenerative life support system. (Photo by Gene Giacomelli/Department of Biosystems Engineering)

Many things change for astronauts when they leave Earth and head into space, but at least one remains the same: They need food and water. NASA recently awarded funding to two University of Arizona teams to search for water and grow food in space.

Led by researchers in the College of Engineering and College of Agriculture and Life Sciences, the missions focus on harvesting water from the lunar surface and improving techniques for microgravity crop production.

Growing Crops in Space

Manned space exploration has long captured the hearts and minds of people across the globe. However, one of the major hurdles for humans' sustained presence on the moon and beyond remains: a sustainable and efficient means of providing astronauts with nutritious and freshly grown fruits and vegetables.

The challenge? Zero gravity. To put it simply, water behaves differently in space.

"There's no gravity, so it's very different than watering a garden in your backyard," said Murat Kacira, director of the Controlled Environment Agriculture Center and professor in the Department of Biosystems Engineering. "Keeping a proper balance of water and nutrients at the roots and maintaining sufficient oxygen levels for crops are real issues."

Various systems for crop production on the space station have been evaluated and demonstrated with success, including the Biomass Production System, Vegetable Production System and Advanced Plant Habitat.

Mixed greens, including mizuna, red romaine lettuce and Tokyo bekana cabbage, have been grown in the International Space Station with the Vegetable Production System, or VEGGIE. (Photo courtesy of NASA)In the Vegetable Production System, popularly known as VEGGIE, a garden about the size of a piece of carry-on luggage typically holds about six plants. Each plant grows in a "pillow" filled with a clay substrate and fertilizer designed to help distribute water, nutrients and oxygen around the root zone.

However, challenges remain for sustained food production.

To improve upon current designs and support its goals to further human space exploration, NASA has awarded $1.12 million to the University of Arizona and four other investigative teams. The charge: to develop an improved water and nutrient delivery system for growing crops in microgravity conditions that is compatible with the limited available space in lunar surface habitats and spacecraft.

Murat KaciraLed by Kacira, the UArizona team brings together several researchers behind the university's Prototype Lunar/Mars Greenhouse and Bioregenerative Life Support Systems efforts, including Phil Sadler, a botanist and innovator responsible for the overall design and fabrication of the Lunar/Mars Greenhouse modules, and Roberto Furfaro, director of the College of Engineering's Space Systems Engineering Laboratory.

"Building on our history with bioregenerative life support systems, we have assembled an incredible interdisciplinary team of scientists and engineers," said Kacira. "The technology we're developing not only supports the future in space exploration but can be used to improve food production right here on Earth."

Other team members include Kitt Farrell-Poe, head of the Department of Biosystems Engineering and an expert in biological processes, water quality and water treatment systems; Minkyu Kim, a biomedical engineer specializing in artificial protein design and synthesis, polymer physics and soft materials; Barry Pryor, a professor in the School of Plant Sciences who specializes in plant health management, plant pathology and mycology; John Adams, the deputy director of Biosphere 2 and an expert in wildlife, fisheries and biology; and Neal Barto, a horticultural engineer who will support sensor development, instrumentation and system monitoring.                                                                                                                                 

The University of Arizona will also partner with Stefania De Pascale, Veronica De Micco, Youssef Rouphael and Chiara Amitrano from the University of Naples Federico II; Alberto Battistelli, Stefano Moscatello and Simona Proietti from the Italian National Research Council; Daniel Schubert from the German AeroSpace Center; Cesare Lobascio and Giorgio Boscheri from Thales Alenia Space-Italy; and Gary Stutte of SyNRGE LLC.

Read the full story